cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384437 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the n-th q-Catalan number for q=k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 5, 1, 1, 1, 10, 93, 14, 1, 1, 1, 17, 847, 6477, 42, 1, 1, 1, 26, 4433, 627382, 1733677, 132, 1, 1, 1, 37, 16401, 18245201, 4138659802, 1816333805, 429, 1, 1, 1, 50, 48205, 256754526, 1197172898385, 244829520301060, 7526310334829, 1430, 1
Offset: 0

Views

Author

Seiichi Manyama, May 29 2025

Keywords

Examples

			Square array begins:
  1,  1,       1,          1,             1,               1, ...
  1,  1,       1,          1,             1,               1, ...
  1,  2,       5,         10,            17,              26, ...
  1,  5,      93,        847,          4433,           16401, ...
  1, 14,    6477,     627382,      18245201,       256754526, ...
  1, 42, 1733677, 4138659802, 1197172898385, 100333200992026, ...
		

Crossrefs

Main diagonal gives A384282.

Programs

  • PARI
    a(n, k) = if(k==1, binomial(2*n, n)/(n+1), (1-k)/(1-k^(n+1))*prod(j=0, n-1, (1-k^(2*n-j))/(1-k^(j+1))));
    
  • Sage
    from sage.combinat.q_analogues import q_catalan_number
    def a(n, k): return q_catalan_number(n, k)

Formula

A(n,k) = q_binomial(2*n, n, k)/q_binomial(n+1, 1, k).