A384480 Square array read by antidiagonals: T(n,k) is the length of a shortest addition-composition chain for n*x+k, starting with 1 and x; n, k >= 0.
0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 5, 4, 4, 3, 4, 4, 5, 3, 4, 4, 4, 4, 4, 4, 4, 5, 4, 3, 4, 5, 4, 5, 3, 4, 4, 5, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 5, 4, 5, 5, 4, 4, 5, 5, 5, 4, 4, 4, 5, 4, 4, 5, 5, 4
Offset: 0
Examples
Array begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 ---+-------------------------------------- 0 | 0 0 1 2 2 3 3 4 3 4 4 5 4 1 | 0 1 2 3 3 4 4 5 4 5 5 5 5 2 | 1 2 2 3 3 4 4 4 4 5 5 5 5 3 | 2 3 3 3 4 4 4 5 5 5 5 5 5 4 | 2 3 3 3 3 4 3 4 4 4 4 5 4 5 | 3 4 4 4 4 4 4 4 5 5 5 5 5 6 | 3 4 4 4 4 4 4 5 4 4 5 5 5 7 | 4 5 5 5 5 5 5 5 5 5 5 6 6 8 | 3 4 4 4 4 4 4 4 4 5 4 5 4 9 | 3 4 5 4 4 5 5 5 4 5 5 5 4 10 | 4 5 5 5 5 5 5 5 5 5 5 6 5 11 | 4 5 6 5 5 5 6 6 6 5 5 6 6 12 | 4 5 5 5 5 5 5 5 5 5 5 5 5 For (n,k) = (4,6), the unique shortest chain for 4*x+6 is (1, x,) x+1, 2*x+2, 4*x+6 of length T(4,6) = 3. The last term of the chain is the composition of 2*x+2 with itself. For (n,k) = (6,4), a shortest chain for 6*x+4 is (1, x,) x+1, 2*x+2, 3*x+2, 6*x+4 of length T(6,4) = 4. This chain uses only additions.
Formula
T(n,k) <= T(n,k-1) + 1.
T(n,k) <= T(n-1,k) + 1.
Comments