A384493 Composite integers k such that sigma(k) | (k + 1)*tau(k) where tau is number of divisors of k.
20, 35, 104, 207, 399, 464, 650, 1519, 1952, 2015, 2774, 2915, 2975, 4454, 11339, 22847, 32318, 63503, 97019, 122499, 130304, 352835, 522752, 924482, 1949375, 7366463, 8382464, 9486399, 15857855, 30222023, 39992975, 49280399, 63483104, 65094623, 69291935, 95309054
Offset: 1
Keywords
Examples
104 is in the sequence as tau(104) = 8, sigma(104) = 210 and sigma(104) = 210 | 840 = (104 + 1) * 8 = (104 + 1) * tau(104).
Crossrefs
Composites in A384354.
Programs
-
Mathematica
Select[Range[4, 2^20], And[CompositeQ[#1], Divisible[(#1 + 1)*#2, #3]] & @@ Prepend[DivisorSigma[{0, 1}, #], #] &] (* Michael De Vlieger, May 31 2025 *)
-
PARI
is(n) = my(f = factor(n), nd = numdiv(f)); nd > 2 && ((n+1)*nd) % sigma(f) == 0
-
Python
from sympy import divisors, isprime def ok(n): return n > 3 and not isprime(n) and (n+1)*len(d:=divisors(n))%sum(d) == 0 print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, May 31 2025