A384498 Squarefree numbers whose distinct prime factors can be partitioned into two sets with equal sums.
1, 30, 70, 286, 646, 1798, 2145, 2310, 2730, 3135, 3526, 3570, 4641, 4845, 5005, 5610, 6006, 6279, 6630, 7198, 7410, 7854, 8778, 8855, 8970, 9177, 10366, 10374, 10626, 10695, 11305, 11571, 11730, 13110, 13485, 13566, 13585, 15470, 16095, 16302, 16422, 16530
Offset: 1
Keywords
Examples
2145 = 3*5*11*13 is a term because it is squarefree and 3+13 = 5+11. 16422 = 2*3*7*17*23 is squarefree and 2+7+17 = 3+23.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
q:= n-> (l-> {l[.., 2][]} minus {1}={} and (s-> (m-> m::even and coeff(mul(1+x^j, j=s), x, m/2)>0) (add(i, i=s)))({l[.., 1][]}))(ifactors(n)[2]): select(q, [$1..20000])[];
-
Mathematica
Join[{1},Select[Range[16600],SquareFreeQ[#]&&MemberQ[Total/@Subsets[First/@FactorInteger[#]],Total[First/@FactorInteger[#]]/2]&]] (* James C. McMahon, Jun 02 2025 *)