A384526 Primes p such that p + 6, p + 14 and p + 20 are also primes.
17, 23, 47, 53, 83, 257, 263, 353, 443, 557, 587, 593, 977, 1103, 1217, 1277, 1283, 1433, 1607, 1973, 1997, 2267, 2657, 2693, 2837, 3527, 3617, 4007, 4637, 4643, 4937, 5393, 5807, 6197, 6257, 6323, 6353, 6977, 8693, 10253, 10847, 10973, 11483, 11807, 12143, 12497, 12953, 13613, 14537
Offset: 1
Keywords
Examples
p=47: 47+6=53, 47+14=61, 47+20=67 —> prime quartet: (47, 53, 61, 67).
Programs
-
Maple
select(p -> andmap(isprime,[p, p + 6, p + 14, p + 20]), [seq(i,i=5 .. 20000, 6)]); # Robert Israel, Jun 01 2025
-
Mathematica
Select[Prime[Range[1700]], PrimeQ[#+6]&&PrimeQ[#+14]&&PrimeQ[#+20] &] (* Stefano Spezia, Jun 01 2025 *)
Formula
a(n) == 5 (mod 6). - Hugo Pfoertner, Jun 01 2025
Comments