A384527 Primes p such that p + 6, p + 12, p + 14, p + 20 and p + 26 are also primes.
17, 47, 257, 587, 1277, 4637, 14537, 19457, 71327, 101267, 113147, 115757, 150197, 179807, 191447, 193367, 267887, 302567, 344237, 408197, 416387, 442817, 482387, 536267, 566537, 652727, 886967, 1043747, 1268777, 1300127, 1373147, 1464257, 1589657, 1616597, 1988237
Offset: 1
Keywords
Examples
p=257: 257+6=263, 257+12=269, 257+14=271, 257+20=277, 257+26=283 —> prime sextuple: (257, 263, 269, 271, 277, 283).
Programs
-
Mathematica
Select[Prime[Range[150000]],PrimeQ[#+6]&&PrimeQ[#+12]&&PrimeQ[#+14]&&PrimeQ[#+20]&&PrimeQ[#+26] &] (* Stefano Spezia, Jun 01 2025 *)
Formula
a(n) == 17 (mod 30). - Hugo Pfoertner, Jun 01 2025
Comments