A384598 Expansion of (1-3*x^2) / (1-x-4*x^2+2*x^3+2*x^4).
1, 1, 2, 4, 8, 18, 38, 86, 186, 418, 914, 2042, 4490, 9994, 22042, 48954, 108154, 239898, 530522, 1175898, 2601882, 5764634, 12759322, 28262298, 62566554, 138567834, 306790810, 679404442, 1504298906, 3331199386, 7376004506, 16333395354, 36166416794
Offset: 0
Examples
a(3)=4 because we have the walks 0-1-0-1, 0-1-2-1, 0-1-2-3, 0-1-2-4.
Links
- Sean A. Irvine, Walks on Graphs.
- Index entries for linear recurrences with constant coefficients, signature (1,4,-2,-2).
Crossrefs
Programs
-
Maple
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-2|-2|4|1>>^n. <<1,1,2,4>>)[1,1]: seq(a(n), n=0..32); # Alois P. Heinz, Jun 04 2025
-
Mathematica
CoefficientList[Series[(1 - 3*x^2)/(1 - x - 4*x^2 + 2*x^3 + 2*x^4), {x, 0, 32}], x] (* Michael De Vlieger, Jun 04 2025 *)
Comments