cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384598 Expansion of (1-3*x^2) / (1-x-4*x^2+2*x^3+2*x^4).

Original entry on oeis.org

1, 1, 2, 4, 8, 18, 38, 86, 186, 418, 914, 2042, 4490, 9994, 22042, 48954, 108154, 239898, 530522, 1175898, 2601882, 5764634, 12759322, 28262298, 62566554, 138567834, 306790810, 679404442, 1504298906, 3331199386, 7376004506, 16333395354, 36166416794
Offset: 0

Views

Author

Sean A. Irvine, Jun 04 2025

Keywords

Comments

Number of walks of length n on the following graph starting at vertex 0:
3
/|
0-1-2 |
\|
4.
Also, for n>=1, the number of walks of length n-1 starting from vertex 1 in the same graph.

Examples

			a(3)=4 because we have the walks 0-1-0-1, 0-1-2-1, 0-1-2-3, 0-1-2-4.
		

Crossrefs

Cf. A384599 (vertex 2), A384600 (vertex 3), A062112 (missing edge {3,4}), A382683 (missing edge {0,1}).

Programs

  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-2|-2|4|1>>^n. <<1,1,2,4>>)[1,1]:
    seq(a(n), n=0..32);  # Alois P. Heinz, Jun 04 2025
  • Mathematica
    CoefficientList[Series[(1 - 3*x^2)/(1 - x - 4*x^2 + 2*x^3 + 2*x^4), {x, 0, 32}], x] (* Michael De Vlieger, Jun 04 2025 *)