A384599 Expansion of (1+3*x+2*x^2) / (1-4*x^2-2*x^3).
1, 3, 6, 14, 30, 68, 148, 332, 728, 1624, 3576, 7952, 17552, 38960, 86112, 190944, 422368, 936000, 2071360, 4588736, 10157440, 22497664, 49807232, 110305536, 244224256, 540836608, 1197508096, 2651794944, 5871705600, 13002195968, 28790412288, 63752195072
Offset: 0
Examples
a(2)=6 because we have the walks 2-1-0, 2-1-2, 2-3-2, 2-3-4, 2-4-2, 2-4-3.
Links
- Sean A. Irvine, Walks on Graphs.
- Index entries for linear recurrences with constant coefficients, signature (0,4,2).
Crossrefs
Programs
-
Maple
a:= n-> (<<0|1|0>, <0|0|1>, <2|4|0>>^n. <<1,3,6>>)[1,1]: seq(a(n), n=0..31); # Alois P. Heinz, Jun 04 2025
-
Mathematica
CoefficientList[Series[(1 + 3*x + 2*x^2)/(1 - 4*x^2 - 2*x^3), {x, 0, 31}], x] (* Michael De Vlieger, Jun 04 2025 *)
Comments