A384600 Expansion of (1+x-x^2) / (1-x-4*x^2+2*x^3+2*x^4).
1, 2, 5, 11, 25, 55, 123, 271, 603, 1331, 2955, 6531, 14483, 32035, 70995, 157107, 348051, 770419, 1706419, 3777779, 8366515, 18523955, 41021619, 90828851, 201134387, 445358643, 986195251, 2183703347, 4835498291, 10707203891, 23709399859, 52499812147
Offset: 0
Examples
a(2)=5 because we have the walk 3-2-1, 3-2-3, 3-2-4, 3-4-2, 3-4-3.
Links
- Sean A. Irvine, Walks on Graphs.
- Index entries for linear recurrences with constant coefficients, signature (1,4,-2,-2).
Crossrefs
Programs
-
Maple
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-2|-2|4|1>>^n. <<1,2,5,11>>)[1,1]: seq(a(n), n=0..31); # Alois P. Heinz, Jun 04 2025
-
Mathematica
CoefficientList[Series[(1 + x - x^2)/(1 - x - 4*x^2 + 2*x^3 + 2*x^4), {x, 0, 31}], x] (* Michael De Vlieger, Jun 04 2025 *)
Comments