A384603 Primes preceded and followed by gaps whose quotient (value greater or equal to 1) is less than 2.
5, 23, 37, 47, 53, 67, 79, 83, 89, 131, 157, 163, 167, 173, 211, 233, 251, 257, 263, 277, 293, 337, 353, 359, 367, 373, 379, 383, 389, 409, 439, 443, 449, 479, 503, 547, 557, 563, 577, 587, 593, 607, 613, 631, 647, 653, 677, 683, 691, 701, 709, 719, 727, 733, 739, 751, 757, 787, 797
Offset: 1
Keywords
Examples
5 is a term because Max(5-3,7-5)/Min(5-3,7-5) = 2/2 = 1. 23 is a term because Max(23-19,29-23)/Min(23-19,29-23) = 6/4 = 1.5. 37 is a term because Max(37-31,41-37)/Min(37-31,41-37) = 6/4 = 1.5.
Crossrefs
Cf. A383215.
Programs
-
PARI
forprime(P=3, 1000, my(M=P-precprime(P-1), Q=nextprime(P+1)-P, AR=max(M,Q)/min(M,Q), AR0=2); if(AR
-
Python
from itertools import islice from sympy import nextprime def A384603_gen(): # generator of terms p,q,r = 2,3,5 while True: s, t = q-p, r-q if s<(t<<1) and t<(s<<1): yield q p, q, r = q, r, nextprime(r) A384603_list = list(islice(A384603_gen(),59)) # Chai Wah Wu, Jun 10 2025
Formula
Conjecture: Limit_{n->oo} n / PrimePi(a(n)) = 1/3.
Comments