A384605 Expansion of (1+x) / (1-x-4*x^2+2*x^3).
1, 2, 6, 12, 32, 68, 172, 380, 932, 2108, 5076, 11644, 27732, 64156, 151796, 352956, 831828, 1940060, 4561460, 10658044, 25023764, 58533020, 137311988, 321396540, 753578452, 1764540636, 4136061364, 9687067004, 22702231188, 53178376476, 124613167220
Offset: 0
Examples
a(3)=6 because we have the walks 0-1-0-1, 0-1-2-1, 0-1-2-3, 0-1-3-1, 0-1-3-2, 0-1-4-1.
Links
- Sean A. Irvine, Walks on Graphs.
- Index entries for linear recurrences with constant coefficients, signature (1,4,-2).
Crossrefs
Programs
-
Maple
a:= n-> (<<0|1|0|0|0>, <1|0|1|1|1>, <0|1|0|1|0>, <0|1|1|0|0>, <0|1|0|0|0>>^n. <<1,1,1,1,1>>)[3,1]: seq(a(n), n=0..32);
-
Mathematica
CoefficientList[Series[(1 + x)/(1 - x - 4*x^2 + 2*x^3), {x, 0, 32}], x]
Comments