A384641 Expansion of (1+2*x-x^3) / (1-x-5*x^2+x^3+2*x^4).
1, 3, 8, 21, 56, 147, 390, 1027, 2718, 7169, 18952, 50025, 132180, 349015, 921986, 2434831, 6431386, 16985525, 44863652, 118490229, 312960192, 826576635, 2183160062, 5766102587, 15229405878, 40223605481, 106238212160, 280594628513, 741103272076, 1957390991519
Offset: 0
Examples
a(2)=8 because we have the walks 2-1-0, 2-1-2, 2-1-4, 2-3-2, 2-3-4, 2-4-1, 2-4-2, 2-4-3.
Links
- Sean A. Irvine, Walks on Graphs.
- Index entries for linear recurrences with constant coefficients, signature (1,5,-1,-2).
Crossrefs
Programs
-
Maple
a:= n-> (<<0|1|0|0|0>, <1|0|1|0|1>, <0|1|0|1|1>, <0|0|1|0|1>, <0|1|1|1|0>>^n. <<1,1,1,1,1>>)[3,1]: seq(a(n), n=0..32);
-
Mathematica
CoefficientList[Series[(1+2*x-x^3) / (1-x-5*x^2+x^3+2*x^4), {x, 0, 32}], x]
Comments