A384640 Expansion of (1-3*x^2) / (1-x-5*x^2+x^3+2*x^4).
1, 1, 3, 7, 19, 49, 131, 343, 911, 2397, 6347, 16735, 44251, 116785, 308611, 814815, 2152583, 5684477, 15015355, 39655527, 104742659, 276635985, 730663043, 1929789255, 5096983167, 13461994429, 35555794923, 93909205391, 248032219243, 655098462417, 1730238763395
Offset: 0
Examples
a(3)=7 because we have the walks 0-1-0-1, 0-1-2-1, 0-1-2-3, 0-1-2-4, 0-1-4-1, 0-1-4-2, 0-1-4-3.
Links
- Sean A. Irvine, Walks on Graphs.
- Index entries for linear recurrences with constant coefficients, signature (1,5,-1,-2).
Crossrefs
Programs
-
Maple
a:= n-> (<<0|1|0|0|0>, <1|0|1|0|1>, <0|1|0|1|1>, <0|0|1|0|1>, <0|1|1|1|0>>^n. <<1,1,1,1,1>>)[1,1]: seq(a(n), n=0..32);
-
Mathematica
CoefficientList[Series[(1-3*x^2) / (1-x-5*x^2+x^3+2*x^4), {x, 0, 32}], x]
Comments