cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A384641 Expansion of (1+2*x-x^3) / (1-x-5*x^2+x^3+2*x^4).

Original entry on oeis.org

1, 3, 8, 21, 56, 147, 390, 1027, 2718, 7169, 18952, 50025, 132180, 349015, 921986, 2434831, 6431386, 16985525, 44863652, 118490229, 312960192, 826576635, 2183160062, 5766102587, 15229405878, 40223605481, 106238212160, 280594628513, 741103272076, 1957390991519
Offset: 0

Views

Author

Sean A. Irvine, Jun 05 2025

Keywords

Comments

Number of walks of length n starting at vertex 2 in the following graph:
2
/|\
0-1 | 3
\|/
4.

Examples

			a(2)=8 because we have the walks 2-1-0, 2-1-2, 2-1-4, 2-3-2, 2-3-4, 2-4-1, 2-4-2, 2-4-3.
		

Crossrefs

Cf. A384640 (vertices 0, 1), A384642 (vertex 3), A005824 (missing edge {2,4}), A026597 (missing edge {0,1}).

Programs

  • Maple
    a:= n-> (<<0|1|0|0|0>, <1|0|1|0|1>, <0|1|0|1|1>, <0|0|1|0|1>, <0|1|1|1|0>>^n. <<1,1,1,1,1>>)[3,1]:
    seq(a(n), n=0..32);
  • Mathematica
    CoefficientList[Series[(1+2*x-x^3) / (1-x-5*x^2+x^3+2*x^4), {x, 0, 32}], x]

A384642 Expansion of (1+x-x^2+x^3) / (1-x-5*x^2+x^3+2*x^4).

Original entry on oeis.org

1, 2, 6, 16, 42, 112, 294, 780, 2054, 5436, 14338, 37904, 100050, 264360, 698030, 1843972, 4869662, 12862772, 33971050, 89727304, 236980458, 625920384, 1653153270, 4366320124, 11532205174, 30458811756, 80447210962, 212476424320, 561189257026, 1482206544152
Offset: 0

Views

Author

Sean A. Irvine, Jun 05 2025

Keywords

Comments

Number of walks of length n starting at vertex 3 in the following graph:
2
/|\
0-1 | 3
\|/
4.

Examples

			a(2)=6 because we have the walks 3-2-1, 3-2-3, 3-2-4, 3-4-1, 3-4-2, 3-4-3.
		

Crossrefs

Cf. A384640 (vertices 0, 1), A384641 (vertex 2), A005824 (missing edge {2,4}), A026597 (missing edge {0,1}).

Programs

  • Maple
    a:= n-> (<<0|1|0|0|0>, <1|0|1|0|1>, <0|1|0|1|1>, <0|0|1|0|1>, <0|1|1|1|0>>^n. <<1,1,1,1,1>>)[4,1]:
    seq(a(n), n=0..32);
  • Mathematica
    CoefficientList[Series[(1+x-x^2+x^3) / (1-x-5*x^2+x^3+2*x^4), {x, 0, 32}], x]

A384678 Expansion of (1+x) / (1-2*x-4*x^2+2*x^3).

Original entry on oeis.org

1, 3, 10, 30, 94, 288, 892, 2748, 8488, 26184, 80824, 249408, 769744, 2375472, 7331104, 22624608, 69822688, 215481600, 665004736, 2052290496, 6333636736, 19546425984, 60322817920, 186164066304, 574526552320, 1773063734016, 5471905544704, 16887012920832
Offset: 0

Views

Author

Sean A. Irvine, Jun 05 2025

Keywords

Comments

Number of walks of length n starting at vertex 0 in the following graph:
2
/|\
0-1-+-3
\|/
4.

Examples

			a(2)=10 because we have the walks 2-1-0, 2-1-2, 2-1-3, 2-1-4, 2-3-1, 2-3-2, 2-3-4, 2-4-1, 2-4-2, 2-4-3.
		

Crossrefs

Cf. A384677 (vertices 0 and 1), A000244 (missing edge {0,1}), A384633 (missing edge {2,4}), A384640 (missing edge {1,3}).

Programs

  • Maple
    a:= n-> (<<0|1|0|0|0>, <1|0|1|1|1>, <0|1|0|1|1>, <0|1|1|0|1>, <0|1|1|1|0>>^n. <<1,1,1,1,1>>)[1,1]:
    seq(a(n), n=0..32);
  • Mathematica
    CoefficientList[Series[(1+x) / (1-2*x-4*x^2+2*x^3), {x, 0, 32}], x]
    LinearRecurrence[{2,4,-2},{1,3,10},30] (* Harvey P. Dale, Jul 07 2025 *)

A384677 Expansion of (1-x-2*x^2) / (1-2*x-4*x^2+2*x^3).

Original entry on oeis.org

1, 1, 4, 10, 34, 100, 316, 964, 2992, 9208, 28456, 87760, 270928, 835984, 2580160, 7962400, 24573472, 75836224, 234041536, 722281024, 2229055744, 6879152512, 21229965952, 65518430464, 202198419712, 624010629376, 1925778076672, 5943201831424, 18341494710784
Offset: 0

Views

Author

Sean A. Irvine, Jun 05 2025

Keywords

Comments

Number of walks of length n starting at vertex 0 in the following graph:
2
/|\
0-1-+-3
\|/
4.
Also, for n>=1, the number of walks of length n-1 starting at vertex 1 in the same graph.

Examples

			a(3)=10 because we have the walks 0-1-0-1, 0-1-2-1, 0-1-2-3, 0-1-2-4, 0-1-3-1, 0-1-3-2, 0-1-3-4, 0-1-4-1, 0-1-4-2, 0-1-4-3.
		

Crossrefs

Cf. A384678 (vertices 2, 3, 4), A000244 (missing edge {0,1}), A384633 (missing edge {2,4}), A384640 (missing edge {1,3}).

Programs

  • Maple
    a:= n-> (<<0|1|0|0|0>, <1|0|1|1|1>, <0|1|0|1|1>, <0|1|1|0|1>, <0|1|1|1|0>>^n. <<1,1,1,1,1>>)[1,1]:
    seq(a(n), n=0..32);
  • Mathematica
    CoefficientList[Series[(1-x-2*x^2) / (1-2*x-4*x^2+2*x^3), {x, 0, 32}], x]
    Table[(MatrixPower[{{0,1,0,0,0},{1,0,1,1,1},{0,1,0,1,1},{0,1,1,0,1},{0,1,1,1,0}},n].{1,1,1,1,1}),{n,0,28}][[All,1]] (* Shenghui Yang, Jun 07 2025 *)
Showing 1-4 of 4 results.