A384666 Number of distinct values of the quadratic discriminant D=b^2-4*a*c, for a,b,c in the range [-n,n].
1, 6, 17, 35, 56, 90, 125, 178, 223, 282, 344, 436, 499, 608, 701, 804, 904, 1062, 1164, 1339, 1450, 1604, 1765, 1988, 2114, 2335, 2525, 2735, 2909, 3194, 3366, 3679, 3887, 4137, 4389, 4661, 4840, 5237, 5536, 5835, 6068, 6507, 6759, 7195, 7473, 7773, 8148, 8645
Offset: 0
Keywords
Programs
-
Python
def a(n): D, ac = {0}, {0} SQ = [i*i for i in range(0, n+1)] for i in range(1, n+1): ac.add(i) if (s:= SQ[i]) > n: ac.add(s) for a_ in range(2, n): for c in range(a_+ 1, n+1): ac.add(a_* c) for b in range(n + 1): b2 = SQ[b] for v in ac: ac4 = v << 2 D.add(b2 + ac4) if b2 < ac4: D.add(b2 - ac4) return len(D) print([a(n) for n in range(0, 48)])
Comments