A384669 Positive integers setting a new record for the sum of the square roots of the prime exponents.
1, 2, 4, 6, 12, 24, 30, 60, 120, 180, 210, 360, 420, 840, 1260, 1680, 2520, 3360, 4620, 6720, 7560, 9240, 13860, 18480, 27720, 36960, 55440, 73920, 83160, 110880, 120120, 180180, 221760, 240240, 360360, 480480, 720720, 960960, 1081080, 1441440, 2042040, 2882880, 4084080, 5765760, 6126120
Offset: 1
Keywords
Examples
f_(1/2)(24) = sqrt(3) + sqrt(1), because 24 = (2^3)(3^1). This is a record value for f_(1/2), so 24 is in the sequence. f_(1/2)(30) = sqrt(1) + sqrt(1) + sqrt(1) (because 30 = (2^1)(3^1)(5^1)), which is larger still, putting 30 in the sequence. However, f_(1/2)(32) = sqrt(5) (because 32 = 2^5), smaller than the previous value, so 32 is not in the sequence. g_216(x) = 3^x + 3^x, because 216 = (2^3)(3^3).
Crossrefs
Programs
-
Mathematica
s[n_] := Total[Sqrt[FactorInteger[n][[;; , 2]]]]; s[1] = 0; With[{lps = Cases[Import[ "https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]}, sm = -1; seq = {}; Do[s1 = s[lps[[i]]]; If[s1 > sm, sm = s1; AppendTo[seq, lps[[i]]]], {i, 1, Length[lps]}]; seq] (* Amiram Eldar, Jun 08 2025 *)
-
PARI
s(n) = my(f=factor(n)); sum(k=1, #f~, sqrt(f[k,2])); lista(nn) = my(r=-oo, list=List()); for (n=1, nn, my(ss=s(n)); if (ss > r, r = ss; listput(list, n));); Vec(list); \\ Michel Marcus, Jun 15 2025
Comments