cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A384722 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384720.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 7, 0, 1, 3, 16, 118, 0, 1, 4, 27, 278, 3385, 0, 1, 5, 40, 486, 8008, 141556, 0, 1, 6, 55, 748, 14121, 333482, 7918489, 0, 1, 7, 72, 1070, 22000, 587268, 18524980, 561302470, 0, 1, 8, 91, 1458, 31945, 916084, 32452353, 1303041350, 48589734337, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2025

Keywords

Examples

			Square array begins:
  1,      1,      1,      1,      1,       1, ...
  0,      1,      2,      3,      4,       5, ...
  0,      7,     16,     27,     40,      55, ...
  0,    118,    278,    486,    748,    1070, ...
  0,   3385,   8008,  14121,  22000,   31945, ...
  0, 141556, 333482, 587268, 916084, 1334900, ...
		

Crossrefs

Columns k=0..1 give A000007, A384720.

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, (n-j+k)^(j-1)*binomial(n, j)*a(n-j, 3*j)));

Formula

A(n,0) = 0^n; A(n,k) = k * Sum_{j=0..n} (n-j+k)^(j-1) * binomial(n,j) * A(n-j,3*j).

A384719 E.g.f. A(x) satisfies A(x) = exp( x * A(x*A(x))^2 ).

Original entry on oeis.org

1, 1, 5, 61, 1281, 39641, 1655713, 88312869, 5792082817, 454510418545, 41802078248001, 4434246169988669, 535583662477158529, 72887981688629021097, 11079094119653898282337, 1867050981690536859738901, 346619463962928284995333377, 70501622878003227432547203809
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2025

Keywords

Crossrefs

Column k=1 of A384721.
Cf. A384691.

Programs

  • PARI
    a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, (n-j+k)^(j-1)*binomial(n, j)*a(n-j, 2*j)));

Formula

See A384721.

A384740 E.g.f. A(x) satisfies A(x) = exp( x * A(x*A(x)^3) ).

Original entry on oeis.org

1, 1, 3, 34, 665, 20556, 901417, 52455250, 3885229665, 355223077336, 39166024398641, 5113078496932374, 778733373110049601, 136679150176555902436, 27360426865918664532393, 6191378995818235673842546, 1571577905668087973855557313, 444441393534829346316950781744
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2025

Keywords

Crossrefs

Column k=1 of A384742.
Cf. A384720.

Programs

  • PARI
    a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, (3*n-3*j+k)^(j-1)*binomial(n, j)*a(n-j, j)));

Formula

See A384742.
Showing 1-3 of 3 results.