cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384726 a(n) is the least number that is both the product of n distinct primes and the concatenation of n distinct primes.

Original entry on oeis.org

2, 35, 273, 11235, 237615, 11237835, 1123317195, 111371237835, 11132343837615, 1113172923477615, 111317233377372295, 11131723677292413195, 1113172377671953734135, 111317192375336174123715
Offset: 1

Views

Author

Robert Israel, Jun 08 2025

Keywords

Comments

a(n) is odd for n >= 2, because a number whose last digit is 2 and second-last is odd is divisible by 4.

Examples

			a(4) = 11235 is a term because 11235 is the product of four distinct primes 3, 5, 7, 107 and the concatenation of four distinct primes 11, 2, 3, 5, and no smaller number works.
		

Crossrefs

Programs

  • Maple
    cdp:= proc(x, n, S)
      local i,y;
      if n = 1 then return (not(member(x,S)) and isprime(x)) fi;
      for i from 1 to ilog10(x)+2-n do
        y:= x mod 10^i;
        if member(y,S) or not isprime(y) then next fi;
        if procname((x-y)/10^i, n-1, S union {y}) then return true fi;
      od;
      false
    end proc:
    f:= proc(n) uses priqueue; local pq, t, p, x, i, L, v, Lp;
      initialize(pq);
      L:= [seq(ithprime(i), i=2..n+1)];
      v:= convert(L, `*`);
      insert([-v, L], pq);
      do
        t:= extract(pq);
        x:= -t[1];
        if cdp(x,n,{}) then return x fi;
        L:= t[2];
        p:= nextprime(L[-1]);
        for i from n to 1 by -1 do
          if i < n and L[i] <> prevprime(L[i+1]) then break fi;
          Lp:= [op(L[1..i-1]), op(L[i+1..n]), p];
          insert([-convert(Lp, `*`), Lp], pq)
      od od;
    end proc:
    f(1):= 2:
    map(f, [$1..9]);

Extensions

a(11)-a(14) from Jinyuan Wang, Jun 12 2025