A384746 Consecutive states of the linear congruential pseudo-random number generator MCNP from Los Alamos when started at 1.
1, 19073486328125, 29763723208841, 187205367447973, 131230026111313, 264374031214925, 74735272014937, 31978779697717, 72377397341089, 127824407320157, 39323977335081, 168134765887429, 73951303845617, 27971537168493, 266449281326841, 41546074810965
Offset: 1
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
- Forrest B. Brown and Yasunobu Nagaya, The MCNP5 Random Number Generator, LA-UR-02-3782, American Nuclear Society, Winter Meeting, 2002.
- George S. Fishman, Multiplicative Congruential Random Number Generators with Modulus 2^beta: An Exhaustive Analysis for beta = 32 and a Partial Analysis for beta = 48, Math. Comp., 54, 189 (1990), 331-344.
- B. D. Ripley, Thoughts on pseudorandom number generators, J of Computational and Applied Mathematics, 31, 1 (1990), 153-163.
- Index entries for sequences related to pseudo-random numbers.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, n, irem(5^19*a(n-1), 2^48)) end: seq(a(n), n=1..16); # Alois P. Heinz, Jun 09 2025
-
Mathematica
NestList[Mod[5^19*#, 2^48] &, 1, 30] (* Paolo Xausa, Jun 11 2025 *)
Formula
a(n) = 5^19 * a(n-1) mod 2^48.
Comments