cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384819 Nonnegative numbers a(n) < n for n >= 1 such that exp( Sum_{n>=1} (n^2 - a(n))*x^n/n ) is a power series with integral coefficients.

Original entry on oeis.org

0, 1, 2, 1, 4, 3, 6, 1, 2, 7, 10, 3, 12, 11, 3, 1, 16, 3, 18, 15, 14, 19, 22, 3, 4, 23, 2, 27, 28, 12, 30, 1, 15, 31, 7, 3, 36, 35, 32, 7, 40, 37, 42, 7, 21, 43, 46, 3, 6, 7, 27, 11, 52, 3, 34, 35, 50, 55, 58, 44, 60, 59, 5, 1, 18, 0, 66, 19, 39, 40, 70, 3, 72, 71, 3, 23, 1, 19, 78, 55, 2, 79, 82, 41, 47, 83, 51, 47, 88, 84, 74, 31, 86, 91, 17, 3, 96, 11, 42, 15, 100
Offset: 1

Views

Author

Paul D. Hanna, Jun 18 2025

Keywords

Comments

Conjecture: a(p^n) = p - 1 when p is prime for n >= 1.

Examples

			L.g.f.: A(x) = 0*x + 1*x^2/2 + 2*x^3/3 + 1*x^4/4 + 4*x^5/5 + 3*x^6/6 + 6*x^7/7 + 1*x^8/8 + 2*x^9/9 + 7*x^10/10 + 10*x^11/11 + 3*x^12/12 + 12*x^13/13 + 11*x^14/14 + 3*x^15/15 + 1*x^16/16 + ...
where the following is a power series with integral coefficients
exp( x/(1-x)^2 - A(x) ) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 14*x^5 + 25*x^6 + 43*x^7 + 74*x^8 + 124*x^9 + 205*x^10 + 335*x^11 + 543*x^12 + 869*x^13 + 1379*x^14 + 2170*x^15 + 3388*x^16 + ... + A384820(n)*x^n + ...
which is equivalent to
exp( Sum_{n>=1} (n^2 - a(n))*x^n/n ) = exp(x + 3*x^2/2 + 7*x^3/3 + 15*x^4/4 + 21*x^5/5 + 33*x^6/6 + 43*x^7/7 + 63*x^8/8 + 79*x^9/9 + 93*x^10/10 + 111*x^11/11 + 141*x^12/12 + 157*x^13/13 + 185*x^14/14 + 222*x^15/15 + 255*x^16/16 + ...).
		

Crossrefs

Cf. A384820, A082579 (exp(x/(1-x)^2)).

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=2,n, A = concat(A,t);
    for(t=1,(#A)^2+1, if( denominator( eval(polcoef( exp( intformal(Ser(A)) ),#A)) )==1, A[#A] = t + (#A)*(#A-1); break)) ); n^2 - A[n]}
    for(n=1,101, print1(a(n),", "))