A384819 Nonnegative numbers a(n) < n for n >= 1 such that exp( Sum_{n>=1} (n^2 - a(n))*x^n/n ) is a power series with integral coefficients.
0, 1, 2, 1, 4, 3, 6, 1, 2, 7, 10, 3, 12, 11, 3, 1, 16, 3, 18, 15, 14, 19, 22, 3, 4, 23, 2, 27, 28, 12, 30, 1, 15, 31, 7, 3, 36, 35, 32, 7, 40, 37, 42, 7, 21, 43, 46, 3, 6, 7, 27, 11, 52, 3, 34, 35, 50, 55, 58, 44, 60, 59, 5, 1, 18, 0, 66, 19, 39, 40, 70, 3, 72, 71, 3, 23, 1, 19, 78, 55, 2, 79, 82, 41, 47, 83, 51, 47, 88, 84, 74, 31, 86, 91, 17, 3, 96, 11, 42, 15, 100
Offset: 1
Keywords
Examples
L.g.f.: A(x) = 0*x + 1*x^2/2 + 2*x^3/3 + 1*x^4/4 + 4*x^5/5 + 3*x^6/6 + 6*x^7/7 + 1*x^8/8 + 2*x^9/9 + 7*x^10/10 + 10*x^11/11 + 3*x^12/12 + 12*x^13/13 + 11*x^14/14 + 3*x^15/15 + 1*x^16/16 + ... where the following is a power series with integral coefficients exp( x/(1-x)^2 - A(x) ) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 14*x^5 + 25*x^6 + 43*x^7 + 74*x^8 + 124*x^9 + 205*x^10 + 335*x^11 + 543*x^12 + 869*x^13 + 1379*x^14 + 2170*x^15 + 3388*x^16 + ... + A384820(n)*x^n + ... which is equivalent to exp( Sum_{n>=1} (n^2 - a(n))*x^n/n ) = exp(x + 3*x^2/2 + 7*x^3/3 + 15*x^4/4 + 21*x^5/5 + 33*x^6/6 + 43*x^7/7 + 63*x^8/8 + 79*x^9/9 + 93*x^10/10 + 111*x^11/11 + 141*x^12/12 + 157*x^13/13 + 185*x^14/14 + 222*x^15/15 + 255*x^16/16 + ...).
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..520
Programs
-
PARI
{a(n) = my(A=[1]); for(i=2,n, A = concat(A,t); for(t=1,(#A)^2+1, if( denominator( eval(polcoef( exp( intformal(Ser(A)) ),#A)) )==1, A[#A] = t + (#A)*(#A-1); break)) ); n^2 - A[n]} for(n=1,101, print1(a(n),", "))
Comments