cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384833 G.f. satisfies A(x) = x + A(x^2)*A(x^3) with A(0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 3, 4, 4, 3, 7, 4, 6, 6, 7, 5, 12, 6, 9, 11, 11, 8, 18, 10, 14, 16, 16, 13, 29, 14, 22, 25, 26, 18, 40, 22, 32, 35, 35, 29, 60, 31, 44, 52, 51, 38, 84, 44, 66, 71, 71, 55, 118, 59, 88, 101, 98, 75, 158, 84, 121, 132, 131, 102, 222, 109, 163, 183, 183, 132, 288, 149, 220
Offset: 0

Views

Author

Paul D. Hanna, Jun 29 2025

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 4*x^12 + 2*x^13 + 3*x^14 + 4*x^15 + 4*x^16 + 3*x^17 + 7*x^18 + ...
SPECIFIC VALUES.
A(t) = 8 at t = 0.815567952503420060983324003731884365610153065333843...
A(t) = 7 at t = 0.801345796531134685781199627451222676066060436869548...
A(t) = 6 at t = 0.782464582280003562207635790317752834218000582442380...
A(t) = 5 at t = 0.755941352922813739702152230754990246964815214312332...
A(t) = 4 at t = 0.715501328653246854491171663936314129852235838729017...
A(t) = 3 at t = 0.645441642217772666989026706116848414808373572998316...
A(t) = 2 at t = 0.494376497811120189544751969812464177694437314637999...
  where 2 = t + A(t^2)*A(t^3).
A(1/2) = 2.02411711463174118628591070519235301076213003753496853...
  where A(1/2) = 1/2 + A(1/4)*A(1/8).
A(1/3) = 1.50160454820609473881444517916924635584141796658988569...
  where A(1/3) = 1/3 + A(1/9)*A(1/27).
A(1/4) = 1.33359794441646176628139897881393129146941143225096194...
  where A(1/4) = 1/4 + A(1/16)*A(1/64).
A(1/5) = 1.25006720843726236545112043092498433427969081536440717...
A(1/6) = 1.20002214885614821249840694253067786363033380936497161...
A(1/8) = 1.14286102570339840364008696181046539894860083304162542...
A(1/9) = 1.12500190781795393807826165839192346764220418556447137...
A(1/16) = 1.0666667265196712497741852980367608423574849397188049...
A(1/27) = 1.0384615410463901537541097310422519024141653373409764...
A(1/64) = 1.0158730158875713973506228538750118258791597258893753...
		

Crossrefs

Cf. A382126.

Programs

  • Mathematica
    terms = 81; A[] = 1; Do[A[x] = x + A[x^2] * A[x^3] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Jun 29 2025 *)
  • PARI
    {a(n) = my(A=1+x +x*O(x^n)); for(i=1, ceil(log(n+2)/log(2)), A = x + subst(A, x, x^2)*subst(A, x, x^3) +x*O(x^n); ); polcoef(A, n)}
    for(n=0, 80, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = x + A(x^2)*A(x^3).
(2) A(x) = x + (x^2 + A(x^4)*A(x^6)) * A(x^3).
(3) A(x) = x + (x^3 + A(x^6)*A(x^9)) * A(x^2).
(4) A(x) = x + (x^2 + A(x^4)*A(x^6)) * (x^3 + A(x^6)*A(x^9)).