A384881 Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal runs of consecutive parts decreasing by 1.
1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 1, 3, 0, 1, 0, 2, 2, 2, 0, 1, 0, 2, 3, 3, 2, 0, 1, 0, 2, 5, 3, 2, 2, 0, 1, 0, 1, 8, 4, 4, 2, 2, 0, 1, 0, 3, 5, 10, 4, 3, 2, 2, 0, 1, 0, 2, 9, 9, 9, 5, 3, 2, 2, 0, 1, 0, 2, 11, 13, 9, 9, 4, 3, 2, 2, 0, 1
Offset: 0
Examples
The partition (5,4,2,1,1) has maximal runs ((5,4),(2,1),(1)) so is counted under T(13,3) = 23. Row n = 9 counts the following partitions: 9 63 333 6111 33111 411111 3111111 111111111 54 72 441 22221 51111 2211111 21111111 432 81 522 42111 222111 621 531 321111 3321 711 3222 4221 4311 5211 32211 Triangle begins: 1 0 1 0 1 1 0 2 0 1 0 1 3 0 1 0 2 2 2 0 1 0 2 3 3 2 0 1 0 2 5 3 2 2 0 1 0 1 8 4 4 2 2 0 1 0 3 5 10 4 3 2 2 0 1 0 2 9 9 9 5 3 2 2 0 1 0 2 11 13 9 9 4 3 2 2 0 1 0 2 13 15 17 8 10 4 3 2 2 0 1 0 2 14 23 16 17 8 9 4 3 2 2 0 1 0 2 16 26 26 19 16 9 9 4 3 2 2 0 1 0 4 13 37 32 26 19 16 8 9 4 3 2 2 0 1
Links
- John Tyler Rascoe, Rows n = 0..100, flattened
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1==#2+1&]]==k&]],{n,0,10},{k,0,n}]
-
PARI
tri(n) = {(n*(n+1)/2)} B_list(N) = {my(v = vector(N, i, 0)); v[1] = q*t; for(m=2,N, v[m] = t * (q^tri(m) + sum(i=1,m-1, q^tri(i) * v[m-i] * (q^((m-i)*(i-1))/(1 - q^(m-i)) - q^((m-i)*i) + O('q^(N-tri(i)+1)))))); v} A_qt(max_row) = {my(N = max_row+1, B = B_list(N), g = 1 + sum(m=1,N, B[m]/(1 - q^m)) + O('q^(N+1))); vector(N, n, Vecrev(polcoeff(g, n-1)))} \\ John Tyler Rascoe, Aug 18 2025
Formula
G.f.: 1 + Sum_{m>0} B(m,q,t)/(1 - q^m) where B(m,q,t) = t * (q^tri(m) + Sum_{i=1..m-1} q^tri(i) * B(m-i,q,t) * ((q^((m-i)*(i-1))/(1 - q^(m-i))) - q^((m-i)*i))) and tri(n) = A000217(n). - John Tyler Rascoe, Aug 18 2025