A384901 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384896.
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 0, 0, 1, 4, 12, 6, -23, 0, 1, 5, 18, 19, -37, -51, 0, 1, 6, 25, 40, -33, -148, 27, 0, 1, 7, 33, 70, -1, -264, -186, 920, 0, 1, 8, 42, 110, 70, -360, -681, 1588, 5469, 0, 1, 9, 52, 161, 192, -384, -1446, 1437, 13469, 4836, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, ... 0, 3, 7, 12, 18, 25, ... 0, 0, 6, 19, 40, 70, ... 0, -23, -37, -33, -1, 70, ... 0, -51, -148, -264, -360, -384, ...
Programs
-
PARI
b(n, k) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+2*j+k-1,j-1)*b(n-j,3*j)/j)); a(n, k) = b(n, -k);
Formula
Let b(n,k) = 0^n if n*k=0, otherwise b(n,k) = (-1)^n * k * Sum_{j=1..n} binomial(-n+2*j+k-1,j-1) * b(n-j,3*j)/j. Then A(n,k) = b(n,-k).