A384940 Odd semiprimes interleaved with even semiprimes.
9, 4, 15, 6, 21, 10, 25, 14, 33, 22, 35, 26, 39, 34, 49, 38, 51, 46, 55, 58, 57, 62, 65, 74, 69, 82, 77, 86, 85, 94, 87, 106, 91, 118, 93, 122, 95, 134, 111, 142, 115, 146, 119, 158, 121, 166, 123, 178, 129, 194, 133, 202, 141, 206, 143, 214, 145, 218, 155, 226, 159, 254, 161, 262, 169, 274, 177
Offset: 1
Examples
a(3) = A046315(2) = 15 is the second odd semiprime. a(4) = A100484(2) = 6 is the second even semiprime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A:= select(t -> numtheory:-bigomega(t)=2, [seq(i,i=1..1000,2)]): B:= select(t -> numtheory:-bigomega(t)=2, [seq(i,i=2..1000,2)]): seq(op([A[i],B[i]]),i=1..min(nops(A),nops(B)));
-
Python
from math import isqrt from sympy import primepi, primerange, prime def A384940(n): if n&1: m = n+1>>1 def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(m+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//k) for k in primerange(3, s+1))) return bisection(f,m,m) else: return prime(n>>1)<<1 # Chai Wah Wu, Jun 17 2025