cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A384945 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384942.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 5, 0, 1, 3, 11, -5, 0, 1, 4, 18, 0, -135, 0, 1, 5, 26, 16, -255, -110, 0, 1, 6, 35, 44, -345, -540, 3661, 0, 1, 7, 45, 85, -389, -1230, 5777, 16440, 0, 1, 8, 56, 140, -370, -2100, 5918, 40452, -1375, 0, 1, 9, 68, 210, -270, -3049, 3784, 67356, 86065, -827075, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 13 2025

Keywords

Examples

			Square array begins:
  1,    1,    1,     1,     1,     1,     1, ...
  0,    1,    2,     3,     4,     5,     6, ...
  0,    5,   11,    18,    26,    35,    45, ...
  0,   -5,    0,    16,    44,    85,   140, ...
  0, -135, -255,  -345,  -389,  -370,  -270, ...
  0, -110, -540, -1230, -2100, -3049, -3954, ...
  0, 3661, 5777,  5918,  3784,  -770, -7708, ...
		

Crossrefs

Columns k=0..1 give A000007, A384942.

Programs

  • PARI
    b(n, k) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+2*j+k-1, j-1)*b(n-j, 5*j)/j));
    a(n, k) = b(n, -k);

Formula

Let b(n,k) = 0^n if n*k=0, otherwise b(n,k) = (-1)^n * k * Sum_{j=1..n} binomial(-n+2*j+k-1,j-1) * b(n-j,5*j)/j. Then A(n,k) = b(n,-k).

A384941 G.f. A(x) satisfies A(x) = 1 + x/A(-x*A(x))^4.

Original entry on oeis.org

1, 1, 4, -2, -64, -95, 780, 5230, 19228, -90488, -1454232, -4080620, 19557280, 270109125, 1702743364, -35378580, -74674412048, -515950535521, -1719717134140, 9100931191804, 173629815007712, 988336433707663, 2065106985108344, -25897495149473592
Offset: 0

Views

Author

Seiichi Manyama, Jun 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, k=-1) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+2*j+k-1, j-1)*a(n-j, 4*j)/j));

Formula

See A384944.

A384943 G.f. A(x) satisfies A(x) = 1 + x/A(-x*A(x))^6.

Original entry on oeis.org

1, 1, 6, -9, -244, -39, 11262, 36971, -268890, -3724293, -24899558, 159971919, 3851093928, 9663394063, -197371002600, -2108992348026, -9447769941412, 111942512192787, 2253965670439788, 7917705821761592, -100488750700889250, -1520857626228210483
Offset: 0

Views

Author

Seiichi Manyama, Jun 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, k=-1) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+2*j+k-1, j-1)*a(n-j, 6*j)/j));

Formula

See A384946.
Showing 1-3 of 3 results.