cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A384946 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384943.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 6, 0, 1, 3, 13, -9, 0, 1, 4, 21, -6, -244, 0, 1, 5, 30, 10, -470, -39, 0, 1, 6, 40, 40, -660, -674, 11262, 0, 1, 7, 51, 85, -795, -1824, 19599, 36971, 0, 1, 8, 63, 146, -855, -3384, 24171, 100390, -268890, 0, 1, 9, 76, 224, -819, -5224, 24318, 180627, -268456, -3724293, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 13 2025

Keywords

Examples

			Square array begins:
  1,     1,     1,     1,     1,     1,     1, ...
  0,     1,     2,     3,     4,     5,     6, ...
  0,     6,    13,    21,    30,    40,    51, ...
  0,    -9,    -6,    10,    40,    85,   146, ...
  0,  -244,  -470,  -660,  -795,  -855,  -819, ...
  0,   -39,  -674, -1824, -3384, -5224, -7188, ...
  0, 11262, 19599, 24171, 24318, 19590,  9778, ...
		

Crossrefs

Columns k=0..1 give A000007, A384943.

Programs

  • PARI
    b(n, k) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+2*j+k-1, j-1)*b(n-j, 6*j)/j));
    a(n, k) = b(n, -k);

Formula

Let b(n,k) = 0^n if n*k=0, otherwise b(n,k) = (-1)^n * k * Sum_{j=1..n} binomial(-n+2*j+k-1,j-1) * b(n-j,6*j)/j. Then A(n,k) = b(n,-k).

A384941 G.f. A(x) satisfies A(x) = 1 + x/A(-x*A(x))^4.

Original entry on oeis.org

1, 1, 4, -2, -64, -95, 780, 5230, 19228, -90488, -1454232, -4080620, 19557280, 270109125, 1702743364, -35378580, -74674412048, -515950535521, -1719717134140, 9100931191804, 173629815007712, 988336433707663, 2065106985108344, -25897495149473592
Offset: 0

Views

Author

Seiichi Manyama, Jun 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, k=-1) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+2*j+k-1, j-1)*a(n-j, 4*j)/j));

Formula

See A384944.

A384942 G.f. A(x) satisfies A(x) = 1 + x/A(-x*A(x))^5.

Original entry on oeis.org

1, 1, 5, -5, -135, -110, 3661, 16440, -1375, -827075, -8388505, 2298072, 496514205, 2782147265, 322830120, -164675585390, -1846591014842, -3084367863270, 84920580735040, 845318162940805, 4163798547024100, -18708392155753220, -503209620889452990, -3212928238924865090
Offset: 0

Views

Author

Seiichi Manyama, Jun 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, k=-1) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+2*j+k-1, j-1)*a(n-j, 5*j)/j));

Formula

See A384945.
Showing 1-3 of 3 results.