cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A384987 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384984.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 9, 0, 1, 3, 20, 133, 0, 1, 4, 33, 320, 3185, 0, 1, 5, 48, 567, 7920, 88521, 0, 1, 6, 65, 880, 14529, 232832, 2709625, 0, 1, 7, 84, 1265, 23360, 448203, 7695232, 59590189, 0, 1, 8, 105, 1728, 34785, 752064, 15740001, 220228416, -2800437663, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 14 2025

Keywords

Examples

			Square array begins:
  1,     1,      1,      1,      1,       1, ...
  0,     1,      2,      3,      4,       5, ...
  0,     9,     20,     33,     48,      65, ...
  0,   133,    320,    567,    880,    1265, ...
  0,  3185,   7920,  14529,  23360,   34785, ...
  0, 88521, 232832, 448203, 752064, 1164125, ...
		

Crossrefs

Columns k=0..1 give A000007, A384984.

Programs

  • PARI
    b(n, k) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, (-6*n+5*j+k)^(j-1)*binomial(n, j)*b(n-j, 3*j)));
    a(n, k) = b(n, -k);

Formula

Let b(n,k) = 0^n if n*k=0, otherwise b(n,k) = (-1)^n * k * Sum_{j=1..n} (-6*n+5*j+k)^(j-1) * binomial(n,j) * b(n-j,3*j). Then A(n,k) = b(n,-k).

A385060 E.g.f. A(x) satisfies A(x) = exp(x*A(x)/A(-x*A(x))^3).

Original entry on oeis.org

1, 1, 9, 43, 125, -6279, -412025, -9060911, -98234103, 10633082401, 1397628908171, 76301056937865, 3570677332342477, -21017427583370399, -28544077526642620977, -3624219130398256821119, -403594553235196466813935, -26214785940427662614214975, -249746440937109731554641389
Offset: 0

Views

Author

Seiichi Manyama, Jun 16 2025

Keywords

Crossrefs

Column k=1 of A385063.

Programs

  • PARI
    a(n, k=-1) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, (-n+k)^(j-1)*binomial(n, j)*a(n-j, 3*j)));

Formula

See A385063.
Showing 1-2 of 2 results.