A384999 Irregular triangle read by rows: T(n,k) is the total number of partitions of all numbers <= n with k designated summands, n >= 0, 0 <= k <= A003056(n).
1, 1, 1, 1, 4, 1, 8, 1, 1, 15, 4, 1, 21, 13, 1, 33, 28, 1, 1, 41, 58, 4, 1, 56, 103, 13, 1, 69, 170, 35, 1, 87, 269, 77, 1, 1, 99, 404, 158, 4, 1, 127, 579, 298, 13, 1, 141, 810, 529, 35, 1, 165, 1116, 880, 86, 1, 189, 1470, 1431, 183, 1, 1, 220, 1935, 2214, 371, 4, 1, 238, 2475, 3348, 701, 13
Offset: 0
Examples
Triangle begins: --------------------------------------------- n\k: 0 1 2 3 4 5 6 --------------------------------------------- 0 | 1; 1 | 1, 1; 2 | 1, 4; 3 | 1, 8, 1; 4 | 1, 15, 4; 5 | 1, 21, 13; 6 | 1, 33, 28, 1; 7 | 1, 41, 58, 4; 8 | 1, 56, 103, 13; 9 | 1, 69, 170, 35; 10 | 1, 87, 269, 77, 1; 11 | 1, 99, 404, 158, 4; 12 | 1, 127, 579, 298, 13; 13 | 1, 141, 810, 529, 35; 14 | 1, 165, 1116, 880, 86; 15 | 1, 189, 1470, 1431, 183, 1; 16 | 1, 220, 1935, 2214, 371, 4; 17 | 1, 238, 2475, 3348, 701, 13; 18 | 1, 277, 3156, 4894, 1269, 35; 19 | 1, 297, 3921, 7036, 2187, 86; 20 | 1, 339, 4866, 9871, 3639, 194; 21 | 1, 371, 5906, 13629, 5872, 402, 1; ...
Links
- Alois P. Heinz, Rows n = 0..1000, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+add(expand(b(n-i*j, i-1)*j*x), j=1..n/i))) end: g:= proc(n) option remember; `if`(n<0, 0, g(n-1)+b(n$2)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(g(n)): seq(T(n), n=0..20); # Alois P. Heinz, Jul 22 2025
Comments