cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385029 a(n) = Sum_{-n <= a, b, c <= n} (b^2 - 4*a*c).

Original entry on oeis.org

18, 250, 1372, 4860, 13310, 30758, 63000, 117912, 205770, 339570, 535348, 812500, 1194102, 1707230, 2383280, 3258288, 4373250, 5774442, 7513740, 9648940, 12244078, 15369750, 19103432, 23529800, 28741050, 34837218, 41926500, 50125572, 59559910, 70364110, 82682208, 96668000
Offset: 1

Views

Author

DarĂ­o Clavijo, Jun 15 2025

Keywords

Comments

There are (2*n + 1)^3 combinations of a, b, c.

Crossrefs

Programs

  • Mathematica
    A385029[n_] := (n*(n + 1)*(2*n + 1)^3)/3;
    Array[A385029, 50] (* Paolo Xausa, Jun 18 2025 *)
  • Python
    a = lambda n: ((n*n+n)*((n << 1)+1)**3)//3
    print([a(n) for n in range(1, 11)])

Formula

a(n) = (n*(n+1)*(2*n+1)^3)/3.
a(n) = (A055112(n)*A016754(n))/3.
a(n) = (A002378(n)*A016755(n))/3.
G.f.: 2*x*(9 + 71*x + 71*x^2 + 9*x^3)/(1 - x)^6. - Stefano Spezia, Jun 15 2025
From Amiram Eldar, Jun 18 2025; (Start)
Sum_{n>=1} 1/a(n) = 21*(1 - zeta(3)/2) - 12*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*Pi^3/8 + 3*Pi - 21. (End)