A385094 Primes that are the sum of distinct positive cubes.
73, 197, 251, 281, 307, 349, 379, 433, 443, 503, 521, 541, 547, 577, 587, 631, 659, 673, 701, 709, 719, 757, 821, 827, 829, 853, 863, 881, 883, 919, 947, 953, 1009, 1091, 1097, 1153, 1163, 1171, 1217, 1223, 1231, 1249, 1277, 1289, 1297, 1307, 1361, 1367, 1423, 1433, 1439, 1483, 1493
Offset: 1
Examples
757 is in the sequence because prime 757 = 1^3 + 3^3 + 9^3 = 1^3 + 2^3 + 4^3 + 5^3 + 6^3 + 7^3.
Links
- Zhining Yang, Table of n, a(n) for n = 1..1030
Programs
-
Mathematica
m = 15; a = {0}; Do[a = Select[Union[a, a + k^3], # < m^3 &], {k, m}]; a = Select[PrimeQ]@a
Formula
For n > 1027, a(n) = prime(n + 421).
Comments