A385103 Number of values of s, 0 < s < n, such that -(s^s) == s (mod n).
0, 1, 1, 0, 2, 2, 1, 0, 1, 4, 2, 1, 4, 3, 2, 0, 1, 2, 2, 1, 3, 3, 1, 1, 2, 6, 1, 1, 3, 6, 1, 0, 2, 2, 5, 1, 4, 3, 3, 1, 1, 4, 3, 1, 2, 3, 1, 1, 1, 4, 1, 2, 4, 2, 3, 2, 3, 5, 2, 3, 4, 3, 1, 0, 5, 5, 2, 1, 2, 8, 3, 1, 3, 8, 3, 1, 3, 4, 2, 1, 1, 3, 2, 3, 5, 4, 3, 1, 4, 6, 5, 2, 3, 3, 2, 1, 5, 2, 3, 1
Offset: 1
Keywords
Programs
-
Maple
a:= n-> add(`if`(s&^s+s mod n=0, 1, 0), s=1..n-1): seq(a(n), n=1..100); # Alois P. Heinz, Jun 20 2025
-
PARI
a(n) = sum(s=1, n-1, -Mod(s, n)^s == s); \\ Michel Marcus, Jun 19 2025