A385123 Triangle Read by rows: T(n,k) is the number of rooted ordered trees with n non-root nodes with non-root node labels in {1,..,k} such that all labels appear at least once in all groups of sibling nodes.
1, 0, 1, 0, 2, 2, 0, 5, 6, 6, 0, 14, 22, 36, 24, 0, 42, 90, 150, 240, 120, 0, 132, 378, 648, 1560, 1800, 720, 0, 429, 1638, 3318, 8400, 16800, 15120, 5040, 0, 1430, 7278, 18180, 43128, 126000, 191520, 141120, 40320, 0, 4862, 32946, 98502, 238320, 834120, 1905120, 2328480, 1451520, 362880
Offset: 0
Examples
Triangle begins: k=0 1 2 3 4 5 6 7 n=0 [1] n=1 [0, 1] n=2 [0, 2, 2] n=3 [0, 5, 6, 6] n=4 [0, 14, 22, 36, 24] n=5 [0, 42, 90, 150, 240, 120] n=6 [0, 132, 378, 648, 1560, 1800, 720] n=7 [0, 429, 1638, 3318, 8400, 16800, 15120, 5040] ... T(3,2) = 6 counts the three leaf permutations of each of the following trees: __o__ __o__ / | \ / | \ (1) (1) (2) (1) (2) (2)
Crossrefs
Programs
-
PARI
subsets(S) = {my(s=List()); for(i=0, 2^(#S) -1, my(x=List()); for(j=1,#S, if(bitand(i, 1<<(j-1)), listput(x, S[j]))); listput(s,Vec(x))); Vec(s)} C_aB(B) = {my(S = subsets(B)); sum(i=1,#S, (1/(1-x*z*#S[i]))*(-1)^(#B-#S[i]))} D(k,N,B) = {if(k>N,1, substpol(C_aB(B),z,1 + D(k+1,N-#B+1,B)))} Dx(N,B) = {Vec(1+D(1,N,B)+ O('x^(N+1)))} T(max_row) = {my( N = max_row+1, v = vector(N, i, if(i==1, 1, 0))~); for(k=1, N, v=matconcat([v, Dx(N+1, vector(k,i,i))~])); vector(N, n, vector(n, k, v[n, k]))} T(8)