cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385123 Triangle Read by rows: T(n,k) is the number of rooted ordered trees with n non-root nodes with non-root node labels in {1,..,k} such that all labels appear at least once in all groups of sibling nodes.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 5, 6, 6, 0, 14, 22, 36, 24, 0, 42, 90, 150, 240, 120, 0, 132, 378, 648, 1560, 1800, 720, 0, 429, 1638, 3318, 8400, 16800, 15120, 5040, 0, 1430, 7278, 18180, 43128, 126000, 191520, 141120, 40320, 0, 4862, 32946, 98502, 238320, 834120, 1905120, 2328480, 1451520, 362880
Offset: 0

Views

Author

John Tyler Rascoe, Jun 18 2025

Keywords

Examples

			Triangle begins:
    k=0    1    2      3     4      5      6     7
 n=0 [1]
 n=1 [0,   1]
 n=2 [0,   2,   2]
 n=3 [0,   5,   6,     6]
 n=4 [0,  14,  22,    36,   24]
 n=5 [0,  42,  90,   150,  240,   120]
 n=6 [0, 132,  378,  648, 1560,  1800,   720]
 n=7 [0, 429, 1638, 3318, 8400, 16800, 15120, 5040]
...
T(3,2) = 6 counts the three leaf permutations of each of the following trees:
      __o__        __o__
     /  |  \      /  |  \
   (1) (1) (2)  (1) (2) (2)
		

Crossrefs

Cf. A000108 (column k=1), A000142 (main diagonal), A385125 (row sums).

Programs

  • PARI
    subsets(S) = {my(s=List()); for(i=0, 2^(#S) -1, my(x=List()); for(j=1,#S, if(bitand(i, 1<<(j-1)), listput(x, S[j]))); listput(s,Vec(x))); Vec(s)}
    C_aB(B) = {my(S = subsets(B)); sum(i=1,#S, (1/(1-x*z*#S[i]))*(-1)^(#B-#S[i]))}
    D(k,N,B) = {if(k>N,1, substpol(C_aB(B),z,1 + D(k+1,N-#B+1,B)))}
    Dx(N,B) = {Vec(1+D(1,N,B)+ O('x^(N+1)))}
    T(max_row) = {my( N = max_row+1, v = vector(N, i, if(i==1, 1, 0))~); for(k=1, N, v=matconcat([v, Dx(N+1, vector(k,i,i))~])); vector(N, n, vector(n, k, v[n, k]))}
    T(8)