A385152 Pentagonal numbers that are one-fifth of another pentagonal number.
0, 1, 2262, 11017977685, 24316671758562, 118442787685171571497, 261403178754290105125230, 1273254889025744028795358122877, 2810072963163120003620778537378426, 13687435462403616663579190345877254457425, 30208163863695025530402450846321663951473670
Offset: 1
Keywords
Examples
P = 2262 is a term because both P and 5*P are pentagonal numbers.
Programs
-
Maple
ispent:= x -> issqr(1+24*x) and sqrt(1+24*x) mod 6 = 5: ispent(0):= true: A := (sqrt(5)/2 - 1/2)*(9 + 4*sqrt(5))^i + (-sqrt(5)/2 - 1/2)*(9 - 4*sqrt(5))^i: B := (sqrt(5)/2 + 1/2)*(9 + 4*sqrt(5))^i + (-sqrt(5)/2 + 1/2)*(9 - 4*sqrt(5))^i: M:= 10^60: # to get all terms <= M R:= NULL: for i from 0 do t:= simplify(A); if t mod 6 = 5 then k:= (t+1)/6; x:= k*(3*k-1)/10; if x > M then break fi; if ispent(x) then R:= R, x fi; fi od: for i from 0 do t:= simplify(B); if t mod 6 = 5 then k:= (t+1)/6; x:= k*(3*k-1)/10; if x > M then break fi; if ispent(x) then R:= R, x fi; fi od: sort([R]); # Robert Israel, Jun 30 2025
Formula
Empirical G.f.: (z + 2261*z^2 + 268018301*z^3 + 728035*z^4 + 330*z^5)/(1 - z - 10749957122*z^2 + 10749957122*z^3 + z^4 - z^5). - Robert Israel, Jun 30 2025
Extensions
a(6) from Michel Marcus, Jun 29 2025
More terms from Robert Israel, Jun 30 2025