A385175 Cubes using at most three distinct digits, not ending in 0.
1, 8, 27, 64, 125, 216, 343, 512, 729, 1331, 2744, 3375, 46656, 238328, 778688, 1030301, 5177717, 7077888, 9393931, 700227072, 1003003001, 44474744007, 1000300030001, 1000030000300001, 1331399339931331, 3163316636166336, 1000003000003000001, 1000000300000030000001, 1000000030000000300000001
Offset: 1
Examples
8, 343, and 46656 belong to this list because they are cubes that use 1, 2, and 3 distinct digits, respectively.
Programs
-
Mathematica
Select[Range[10^6]^3,Length[Union[IntegerDigits[#]]]<4&&IntegerDigits[#][[-1]]!=0&] (* James C. McMahon, Jun 30 2025 *) fQ[n_] := Mod[n, 10] > 0 && Length@ Union@ IntegerDigits[n^3] < 4; k = 1; lst = {}; While[k < 1000002, If[ fQ@k, AppendTo[lst, k]]; k++]; lst^3 (* Robert G. Wilson v, Jul 10 2025 *)
Formula
a(n) = A202940(n)^3.
Extensions
a(28) from Robert G. Wilson v, Jul 10 2025
a(29) from David A. Corneth, Jul 10 2025
Comments