A385248 Number of digits in the decimal expansion of Fibonacci(2^n).
1, 1, 1, 2, 3, 7, 14, 27, 54, 107, 214, 428, 856, 1712, 3424, 6848, 13696, 27393, 54785, 109570, 219140, 438279, 876558, 1753116, 3506231, 7012462, 14024923, 28049846, 56099693, 112199385, 224398770, 448797540, 897595080, 1795190160, 3590380321, 7180760641
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..3000
Programs
-
Maple
a:= n-> `if`(n=0, 1, floor(2^n*log[10]((1+sqrt(5))/2)-log[10](5)/2)+1): seq(a(n), n=0..35); # Alois P. Heinz, Jul 30 2025
-
Mathematica
a[n_] := IntegerLength[Fibonacci[2^n]]; Array[a, 30, 0] (* Amiram Eldar, Jul 30 2025 *) A385248[n_] := If[n == 0, 1, Floor[2^n*Log10[GoldenRatio] - Log10[5]/2] + 1]; Array[A385248, 50, 0] (* Paolo Xausa, Aug 07 2025 *)
-
PARI
a(n) = #Str(fibonacci(2^n)); \\ Michel Marcus, Jul 30 2025
-
Python
from sympy import Rational, log, sqrt # uses symbolic computation phi = (1+sqrt(5))/2 def a(n): return 1 if n==0 or n==1 else int(2**n *log(phi)/log(10)-Rational(1,2)*log(5)/log(10))+1
Formula
Extensions
More terms from Michel Marcus, Jul 30 2025
a(29)-a(35) from Amiram Eldar, Jul 30 2025
Comments