cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385248 Number of digits in the decimal expansion of Fibonacci(2^n).

Original entry on oeis.org

1, 1, 1, 2, 3, 7, 14, 27, 54, 107, 214, 428, 856, 1712, 3424, 6848, 13696, 27393, 54785, 109570, 219140, 438279, 876558, 1753116, 3506231, 7012462, 14024923, 28049846, 56099693, 112199385, 224398770, 448797540, 897595080, 1795190160, 3590380321, 7180760641
Offset: 0

Views

Author

Juande Santander-Vela, Jul 28 2025

Keywords

Comments

Binet's formula is Fibonacci(k) = (phi^k - psi^k)/sqrt(5), with phi being the golden ratio (1 + sqrt(5))/2, and psi = (1 - sqrt(5))/2. For even values of k, Fibonacci(k) = floor((phi^k)/sqrt(5)) since psi^(2*k)/sqrt(5) < 0.17^k for all k > 0, and from which the formula below.

Crossrefs

Programs

  • Maple
    a:= n-> `if`(n=0, 1, floor(2^n*log[10]((1+sqrt(5))/2)-log[10](5)/2)+1):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jul 30 2025
  • Mathematica
    a[n_] := IntegerLength[Fibonacci[2^n]]; Array[a, 30, 0] (* Amiram Eldar, Jul 30 2025 *)
    A385248[n_] := If[n == 0, 1, Floor[2^n*Log10[GoldenRatio] - Log10[5]/2] + 1];
    Array[A385248, 50, 0] (* Paolo Xausa, Aug 07 2025 *)
  • PARI
    a(n) = #Str(fibonacci(2^n)); \\ Michel Marcus, Jul 30 2025
  • Python
    from sympy import Rational, log, sqrt # uses symbolic computation
    phi = (1+sqrt(5))/2
    def a(n): return 1 if n==0 or n==1 else int(2**n *log(phi)/log(10)-Rational(1,2)*log(5)/log(10))+1
    

Formula

a(n) = A055642(A058635(n)).
a(n) = A060384(A000079(n)).
a(n) = floor(2^n * log10(phi) - (1/2) * log10(5)) + 1, for n >= 1.
Limit_{n->oo} a(n+1)/a(n) = 2.

Extensions

More terms from Michel Marcus, Jul 30 2025
a(29)-a(35) from Amiram Eldar, Jul 30 2025