cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385294 Numbers whose digits all belong to the same residue class mod 5.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 16, 22, 27, 33, 38, 44, 49, 50, 55, 61, 66, 72, 77, 83, 88, 94, 99, 111, 116, 161, 166, 222, 227, 272, 277, 333, 338, 383, 388, 444, 449, 494, 499, 500, 505, 550, 555, 611, 616, 661, 666, 722, 727, 772, 777, 833, 838, 883, 888, 944, 949, 994, 999, 1111, 1116
Offset: 1

Views

Author

Stefano Spezia, Jun 24 2025

Keywords

Crossrefs

Similar sequences for other values of the modulo k: A059708 (k=2), A385292 (k=3), A385293 (k=4), this sequence (k=5), A385295 (k=6), A385296 (k=7), A385297 (k=8), A385298 (k=9).

Programs

  • Mathematica
    Select[Range[0,1200],Length[DeleteDuplicates[Mod[IntegerDigits[#],5]]] == 1 &]