cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385312 a(n) is the number of ternary strings of length n with at least one 0, at least two 1's and at least three 2's.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 60, 455, 2268, 9366, 34800, 121077, 403392, 1304732, 4133220, 12900771, 39837684, 122064930, 371891592, 1128317489, 3412864056, 10299925992, 31033986588, 93394501983, 280818931020, 843832511150, 2534467085280, 7609793357805, 22843103816688, 68558705110836
Offset: 0

Views

Author

Enrique Navarrete, Jun 25 2025

Keywords

Examples

			a(6) = 60 since the strings are the 60 permutations of 011222.
a(7) = 455 since the strings are the 210 permutations of 0011222, the 140 permutations of 0111222 and the 105 permutations of 0112222.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{13, -72, 222, -417, 489, -350, 140, -24}, {0, 0, 0, 0, 0, 0, 60, 455, 2268, 9366, 34800, 121077}, 30] (* Amiram Eldar, Jun 28 2025 *)

Formula

a(n) = 3^n - 2^(n-2)*(binomial(n,2) + 4*n + 12) + 3*binomial(n,3) + 4*binomial(n,2) + 4*n + 3 for n>=4.
E.g.f.: (exp(x) - x^2/2 - x - 1)*(exp(x) - x - 1)*(exp(x) - 1).
G.f.: x^6*(60 - 325*x +673*x^2 - 678*x^3 + 348*x^4 - 72*x^5)/((1 - x)^4*(1 - 2*x)^3*(1 - 3*x)). - Stefano Spezia, Jun 25 2025