A385325 Numbers x such that there exist two integers y, z both >0 such that sigma(x)^3 = x^3 + y^3 + z^3.
5, 6, 53, 58, 102, 118, 152, 168, 197, 214, 250, 258, 408, 426, 445, 476, 487, 491, 508, 672, 760, 783, 861, 885, 1182, 1204, 1242, 1299, 1305, 1350, 1615, 1890, 1988, 1992, 2040, 2082, 2190, 2465, 2519, 2679, 3105, 3144, 3213, 3276, 3292, 3432, 3994, 4035, 4210, 4256
Offset: 1
Keywords
Examples
(3, 4, 5) is such a triple because sigma(5)^3 = 6^3 = 5^3 + 4^3 + 3^3. 6 is in the sequence as sigma(6)^3 = 6^3 + 8^3 + 10^3. - _David A. Corneth_, Jun 26 2025
Links
- David A. Corneth, PARI program
- S. I. Dimitrov, Generalizations of amicable numbers, arXiv:2408.07387 [math.NT], 2024.
Programs
-
PARI
\\ See Corneth link
Extensions
Data corrected by David A. Corneth, Jun 26 2025
Comments