cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A385356 Numbers x such that there exist two integers 00 such that sigma(x)^2 = sigma(y)^2 = x^2 + y^2 + z^2.

Original entry on oeis.org

2, 40, 164, 196, 224, 1120, 3040, 13440, 22932, 44200, 76160, 90848, 91720, 174592, 530200, 619840, 687184, 872960, 1686400, 1767040, 1807120, 1927680, 1990912, 2154880, 3653760, 4286880, 5637632, 5759680, 6442128, 8225280, 8943800, 9264320, 9465600, 9694080
Offset: 1

Views

Author

S. I. Dimitrov, Jun 26 2025

Keywords

Comments

The numbers x, y and z form a sigma-quadratic triple. See Dimitrov link.

Examples

			(40, 58, 56) is such a triple because sigma(40)^2 = sigma(58)^2 = 90^2 = 40^2 + 58^2 + 56^2.
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import divisor_sigma
    from sympy.ntheory.primetest import is_square
    def A385356_gen(startvalue=1): # generator of terms >= startvalue
        for x in count(max(startvalue,1)):
            sx, x2 = int(divisor_sigma(x)), x**2
            sx2 = sx**2
            if sx2>x2:
                for y in count(x):
                    if (k:=sx2-x2-y**2)<=0:
                        break
                    if is_square(k) and sx==divisor_sigma(y):
                        yield x
                        break
    A385356_list = list(islice(A385356_gen(),8)) # Chai Wah Wu, Jul 02 2025

Extensions

Data corrected by David A. Corneth, Jun 27 2025
a(18)-a(34) from Chai Wah Wu, Jul 02 2025

A385397 Numbers x such that there exist three integers 00 and w>0 such that sigma(x)^3 = sigma(y)^3 = x^3 + y^3 + z^3 + w^3.

Original entry on oeis.org

153, 216, 255, 324, 672, 735, 1074, 1170, 1218, 2430, 2655, 2736, 3482, 4148, 4605, 4935, 5220, 5446, 5916, 6048, 7140, 9340, 11000, 11160, 12768, 14090, 14098, 14980, 17220, 17696, 18984, 21068, 21948, 22128, 23022, 23205, 24297, 24570, 25284, 25740, 29058, 29640, 30240, 30690, 31008, 31190, 32760, 37140, 39840
Offset: 1

Views

Author

S. I. Dimitrov, Jun 27 2025

Keywords

Comments

The numbers x, y, z and w form a sigma-cubic quadruple. See Dimitrov link.

Examples

			(255, 321, 84, 312) is such a quadruple because sigma(255)^3 = sigma(321)^3 = 432^3 = 255^3 + 321^3 + 84^3 + 312^3.
		

Crossrefs

Programs

  • PARI
    issc(n) = if (n>0, for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3) && return(1))); \\ A003325
    isok(x) = my(s=sigma(x)); for (y=1, x, if (s == sigma(y), if (issc(s^3-x^3-y^3), return(1)););); \\ Michel Marcus, Jun 27 2025

Extensions

More terms from David A. Corneth, Jun 27 2025

A386378 Integers x such that there exist four integers 00 and w>0 such that sigma(x)^3 = sigma(y)^3 = sigma(z)^3 = x^3 + y^3 + z^3 + t^3 + w^3.

Original entry on oeis.org

30, 62, 90, 174, 238, 357, 390, 440, 495, 552, 762, 870, 894, 924, 1056, 1146, 1248, 1386, 1560, 1740, 1770, 1782, 1824, 1880, 1938, 1992, 2046, 2208, 2262, 2472, 2568, 2625, 2670, 2686, 2730, 2840, 2856, 3000, 3190, 3382, 3630, 3666, 3720, 3738, 3828, 3885, 3960, 3984
Offset: 1

Views

Author

S. I. Dimitrov, Jul 20 2025

Keywords

Comments

The numbers x, y, z, t and w form a sigma-cubic quintuple. See Dimitrov link.

Examples

			(174, 190, 323, 5, 94) is such a quintuple because sigma(174)^3 = sigma(190)^3 = sigma(323)^3 = 360^3 = 174^3 + 190^3 + 323^3 + 5^3 + 94^3.
		

Crossrefs

Programs

  • PARI
    is23(n) = my(z); for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3, &z) && return([k,z]));
    isok3(x) = my(s=sigma(x), v=select(z->(z>=x), invsigma(s))); if (#v >= 1, for (i=1, #v, for (j=1, #v, my(k=s^3 - x^3 - v[i]^3-v[j]^3); if (k>0, my(tw = is23(k)); if (tw, return([x, v[i], v[j], tw[1], tw[2]])););););); \\ Michel Marcus, Jul 22 2025

Extensions

Corrected and extended by Michel Marcus, Jul 22 2025
Showing 1-3 of 3 results.