A385356
Numbers x such that there exist two integers 00 such that sigma(x)^2 = sigma(y)^2 = x^2 + y^2 + z^2.
2, 40, 164, 196, 224, 1120, 3040, 13440, 22932, 44200, 76160, 90848, 91720, 174592, 530200, 619840, 687184, 872960, 1686400, 1767040, 1807120, 1927680, 1990912, 2154880, 3653760, 4286880, 5637632, 5759680, 6442128, 8225280, 8943800, 9264320, 9465600, 9694080
Offset: 1
Keywords
Examples
(40, 58, 56) is such a triple because sigma(40)^2 = sigma(58)^2 = 90^2 = 40^2 + 58^2 + 56^2.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..161
- S. I. Dimitrov, Generalizations of amicable numbers, arXiv:2408.07387 [math.NT], 2024.
Programs
-
Python
from itertools import count, islice from sympy import divisor_sigma from sympy.ntheory.primetest import is_square def A385356_gen(startvalue=1): # generator of terms >= startvalue for x in count(max(startvalue,1)): sx, x2 = int(divisor_sigma(x)), x**2 sx2 = sx**2 if sx2>x2: for y in count(x): if (k:=sx2-x2-y**2)<=0: break if is_square(k) and sx==divisor_sigma(y): yield x break A385356_list = list(islice(A385356_gen(),8)) # Chai Wah Wu, Jul 02 2025
Extensions
Data corrected by David A. Corneth, Jun 27 2025
a(18)-a(34) from Chai Wah Wu, Jul 02 2025
Comments