cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A385360 Consecutive states of the linear congruential pseudo-random number generator (1861*s + 49297) mod 233280 when started at s=1.

Original entry on oeis.org

1, 51158, 76095, 61132, 208589, 55506, 2923, 123560, 213657, 155854, 126551, 181188, 150565, 81482, 55299, 84256, 85553, 166470, 54127, 2684, 145341, 157378, 163355, 89112, 24649, 198206, 94983, 219700, 204437, 26874, 139891, 45968, 215265, 115702, 53279
Offset: 1

Views

Author

Sean A. Irvine, Jun 26 2025

Keywords

Comments

Periodic with period 233280.
Described in Numerical Recipes as a "quick and dirty" generator.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(1861*a(n-1)+49297, 233280))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[1861*# + 49297, 233280] &, 1, 50] (* after Paolo Xausa *)

Formula

a(n) = (1861 * a(n-1) + 49297) mod 233280.

A385460 Consecutive internal states of the linear congruential pseudo-random number generator (1366*s + 150889) mod 714025 when started at 1.

Original entry on oeis.org

1, 152255, 349944, 491668, 585877, 36846, 500775, 173589, 217163, 475172, 187116, 130395, 478234, 85658, 59617, 188861, 371990, 617454, 329528, 450387, 604006, 524210, 54674, 576973, 12407, 676276, 709580, 505244, 566043, 76552, 473271, 446450, 224239, 144638
Offset: 1

Views

Author

Sean A. Irvine, Jun 29 2025

Keywords

Comments

Periodic with period 714025.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(1366*a(n-1)+150889, 714025))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[1366*# + 150889, 714025] &, 1, 50]

Formula

a(n) = (1366*a(n-1) + 150889) mod 714025.

A385463 Consecutive internal states of the linear congruential pseudo-random number generator (7141*s + 54773) mod 259200 when started at 1.

Original entry on oeis.org

1, 61914, 246647, 97000, 149373, 119366, 197779, 13812, 190265, 10738, 11631, 167744, 151477, 110430, 149003, 69196, 148209, 101642, 120295, 92568, 122861, 13174, 40707, 180260, 104233, 219426, 111839, 101872, 207525, 144398, 103291, 231804, 115937, 76090
Offset: 1

Views

Author

Sean A. Irvine, Jun 29 2025

Keywords

Comments

Periodic with period 259200.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(7141*a(n-1)+54773, 259200))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[7141*# + 54773, 259200] &, 1, 50]

Formula

a(n) = (7141*a(n-1) + 54773) mod 259200.

A385465 Consecutive internal states of the linear congruential pseudo-random number generator (4096*s + 150889) mod 714025 when started at 1.

Original entry on oeis.org

1, 154985, 201224, 379543, 326592, 502896, 50780, 364494, 92038, 133337, 70116, 307975, 648339, 288458, 677507, 518411, 51995, 342959, 423778, 150802, 204256, 660190, 276454, 62823, 424897, 450076, 49635, 672749, 308318, 625217, 546071, 531405, 437569, 230763
Offset: 1

Views

Author

Sean A. Irvine, Jun 29 2025

Keywords

Comments

Periodic with period 714025.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(4096*a(n-1)+150889, 714025))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[4096*# + 150889, 714025] &, 1, 50]

Formula

a(n) = (4096*a(n-1) + 150889) mod 714025.
Showing 1-4 of 4 results.