cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385392 The number of divisors d of n such that -(d^d) == d (mod n).

Original entry on oeis.org

1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 27 2025

Keywords

Crossrefs

Programs

  • Magma
    [1+#[d: d in [1..n-1] | n mod d eq 0 and Modexp(d, d, n) eq (n-d)]: n in [1..100]]; // Juri-Stepan Gerasimov, Jun 28 2025
  • Maple
    a:= n-> add(`if`(d&^d+d mod n=0, 1, 0), d=numtheory[divisors](n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 27 2025
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, PowerMod[#, #, n] == n-# &]; Array[a, 100] (* Amiram Eldar, Jun 27 2025 *)
  • PARI
    a(n) = sumdiv(n, d, -Mod(d, n)^d == d); \\ Michel Marcus, Jun 27 2025