A385392 The number of divisors d of n such that -(d^d) == d (mod n).
1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1
Offset: 1
Programs
-
Magma
[1+#[d: d in [1..n-1] | n mod d eq 0 and Modexp(d, d, n) eq (n-d)]: n in [1..100]]; // Juri-Stepan Gerasimov, Jun 28 2025
-
Maple
a:= n-> add(`if`(d&^d+d mod n=0, 1, 0), d=numtheory[divisors](n)): seq(a(n), n=1..100); # Alois P. Heinz, Jun 27 2025
-
Mathematica
a[n_] := DivisorSum[n, 1 &, PowerMod[#, #, n] == n-# &]; Array[a, 100] (* Amiram Eldar, Jun 27 2025 *)
-
PARI
a(n) = sumdiv(n, d, -Mod(d, n)^d == d); \\ Michel Marcus, Jun 27 2025