A385408 Sum over all ordered partitions of [n] of 6^j for an ordered partition with j inversions.
1, 1, 8, 388, 113480, 199246816, 2099255895008, 132708276995157568, 50336523318422432038400, 114556539064849604787867141376, 1564256035642651626332994903500876288, 128158392280785912677966097933268099449960448, 62999559569114394473388668602373642996554916532377600
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..51
- Wikipedia, Inversion
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1, b(u+o, 0$2), 0)+add(6^(u+j-1)*b(o-j, u+j-1, 1), j=1..o)) end: a:= n-> b(n, 0$2): seq(a(n), n=0..14);
Formula
a(n) = Sum_{k=0..binomial(n,2)} A381299(n,k)*6^k.