cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385431 Leading digit of the decimal expansion of the prime zeta function at n.

Original entry on oeis.org

4, 1, 7, 3, 1, 8, 4, 2, 9, 4, 2, 1, 6, 3, 1, 7, 3, 1, 9, 4, 2, 1, 5, 2, 1, 7, 3, 1, 9, 4, 2, 1, 5, 2, 1, 7, 3, 1, 9, 4, 2, 1, 5, 2, 1, 7, 3, 1, 8, 4, 2, 1, 5, 2, 1, 6, 3, 1, 8, 4, 2, 1, 5, 2, 1, 6, 3, 1, 8, 4, 2, 1, 5, 2, 1, 6, 3, 1, 8, 4, 2, 1, 5, 2, 1, 6, 3
Offset: 2

Views

Author

Marco RipĂ , Jun 28 2025

Keywords

Comments

For each n = 2, 3, 4, ..., a(n) is the most significant (nonzero) digit of the decimal expansion of P(n) := Sum_{p prime} 1/p^n, the prime zeta function at argument n.
The present sequence starts at n = 2, since the underlying series diverges for any integer less than 2.
It is conjectured that a(n) = A111395(n) for all n >= 10 (see "Is the leading digit of the decimal expansion of the prime zeta function at n equal to the first digit of 5^n, for all integers n >= 10?" in Links).

Examples

			For n = 4, a(4) = 7 since the most significant digit of P(4) = Sum_{p prime} 1/p^4 = 0.07699313976424684494... is 7.
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • J. W. L. Glaisher, On the Sums of Inverse Powers of the Prime Numbers, Quart. J. Math. 25, 347-362, 1891.

Crossrefs

Programs

  • Mathematica
    Table[Module[{digits, firstNonZero}, digits = First[RealDigits[N[Sum[MoebiusMu[n]*Log[Zeta[k*n]]/n, {n, 1, 200}], 100]]]; firstNonZero = Select[digits, Function[d, d != 0]][[1]]; firstNonZero], {k, 2, 88}]
    $MaxExtraPrecision = 2^10; a[n_] := RealDigits[ Sum[ MoebiusMu[m]*Log[ Zeta[n*m]]/m,{m, 32}], 10, 16][[1, 1]]; Array[a, 87, 2] - (* Robert G. Wilson v, Jul 11 2025 *)
  • PARI
    a(n) = my(x=sumeulerrat(1/p, n)); while(x<1, x*=10); floor(x); \\ Michel Marcus, Jun 29 2025

Formula

a(n) = most significant (nonzero) digit of P(n), where P(n) := Sum_{p prime} 1/p^n.
a(n) = ld(P(n)), where ld(x) := floor(x/10^floor(log_10(x))) and P(n) := Sum_{k >= 1} moebius(k)*log(zeta(n*k))/k.
For all n > 9, a(n) = most significant (nonzero) digit of 5^n (conjectured).