A385431 Leading digit of the decimal expansion of the prime zeta function at n.
4, 1, 7, 3, 1, 8, 4, 2, 9, 4, 2, 1, 6, 3, 1, 7, 3, 1, 9, 4, 2, 1, 5, 2, 1, 7, 3, 1, 9, 4, 2, 1, 5, 2, 1, 7, 3, 1, 9, 4, 2, 1, 5, 2, 1, 7, 3, 1, 8, 4, 2, 1, 5, 2, 1, 6, 3, 1, 8, 4, 2, 1, 5, 2, 1, 6, 3, 1, 8, 4, 2, 1, 5, 2, 1, 6, 3, 1, 8, 4, 2, 1, 5, 2, 1, 6, 3
Offset: 2
Examples
For n = 4, a(4) = 7 since the most significant digit of P(4) = Sum_{p prime} 1/p^4 = 0.07699313976424684494... is 7.
References
- Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
- J. W. L. Glaisher, On the Sums of Inverse Powers of the Prime Numbers, Quart. J. Math. 25, 347-362, 1891.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 2..1001
- Henri Cohen, High Precision Computation of Hardy-Littlewood Constants, Preprint, 1998.
- Henri Cohen, High-precision computation of Hardy-Littlewood constants. [pdf copy, with permission]
- X. Gourdon and P. Sebah, Some Constants from Number theory.
- Mathematics Stack Exchange, Is the leading digit of the decimal expansion of the prime zeta function at n equal to the first digit of 5^n, for all integers n >= 10?.
- Mathematics Stack Exchange, What is the sum of negative integer powers of all prime numbers?.
- Eric Weisstein's World of Mathematics, Prime Zeta Function.
- Wikipedia, Prime zeta function.
Programs
-
Mathematica
Table[Module[{digits, firstNonZero}, digits = First[RealDigits[N[Sum[MoebiusMu[n]*Log[Zeta[k*n]]/n, {n, 1, 200}], 100]]]; firstNonZero = Select[digits, Function[d, d != 0]][[1]]; firstNonZero], {k, 2, 88}] $MaxExtraPrecision = 2^10; a[n_] := RealDigits[ Sum[ MoebiusMu[m]*Log[ Zeta[n*m]]/m,{m, 32}], 10, 16][[1, 1]]; Array[a, 87, 2] - (* Robert G. Wilson v, Jul 11 2025 *)
-
PARI
a(n) = my(x=sumeulerrat(1/p, n)); while(x<1, x*=10); floor(x); \\ Michel Marcus, Jun 29 2025
Formula
a(n) = most significant (nonzero) digit of P(n), where P(n) := Sum_{p prime} 1/p^n.
a(n) = ld(P(n)), where ld(x) := floor(x/10^floor(log_10(x))) and P(n) := Sum_{k >= 1} moebius(k)*log(zeta(n*k))/k.
For all n > 9, a(n) = most significant (nonzero) digit of 5^n (conjectured).
Comments