A385462 Numbers t which have a proper divisor d_i(t) such that (d_i(t) + sigma(t))/t is an integer k.
2, 4, 8, 10, 16, 24, 32, 44, 60, 64, 84, 128, 136, 152, 168, 184, 252, 256, 270, 336, 512, 630, 752, 756, 792, 864, 884, 924, 936, 1024, 1140, 1170, 1488, 1638, 2048, 2144, 2268, 2272, 2528, 2808, 2970, 3672, 4096, 4320, 4464, 4680, 5148, 5472, 6804, 7308, 7644, 8192, 8384
Offset: 1
Keywords
Examples
4 is in this sequence because sigma(4) + d_1(4) = 7 + 1 = 8 and 8/4 = 2. 24 is in this sequence because sigma(24) + d_7(24) = 60 + 12 = 72 and 72/24 = 3. 4320 is in this sequence because sigma(4320) + d_47(4320) = 15120 + 2160 = 17280 and 17280/4320 = 4.
Programs
-
Maple
filter:= proc(n) local s; s:= - numtheory:-sigma(n) mod n; ormap(d -> d mod n = s, numtheory:-divisors(n) minus {n}) end proc: select(filter, [$1..10^4]); # Robert Israel, Jun 30 2025
-
Mathematica
Select[Range[8384],AnyTrue[(Drop[Divisors[#],-1]+DivisorSigma[1,#])/#,IntegerQ]&] (* James C. McMahon, Jul 05 2025 *)
-
Maxima
(n:1, for t:1 thru 10000 do (s:divsum(t), (A:args(divisors(t)), for i:1 thru length(A)-1 do (y:s+A[i], if mod(y,t)=0 then (print(n,"",t), n:n+1)))));
-
PARI
isok(t) = my(s=sigma(t)); fordiv(t, d, if ((d
Michel Marcus, Jun 30 2025
Comments