A387357 a(n) is the first number with a total of exactly n 1's in the decimal digits of its divisors.
1, 10, 11, 60, 112, 110, 210, 330, 420, 630, 840, 1008, 1890, 1260, 1680, 2520, 2310, 3360, 5460, 6720, 4620, 5040, 7140, 7560, 11880, 9240, 14040, 10080, 17160, 13860, 17136, 16380, 15120, 18480, 27720, 33264, 21420, 39270, 30240, 36960, 41580, 45360, 42840, 57120, 60060, 71820, 75600, 55440
Offset: 1
Examples
a(6) = 110 because of the divisors of 110, 1 and 10 each have one 1, 11 and 110 each have two, for a total of 6, and no smaller number works.
Links
- Robert Israel, Table of n, a(n) for n = 1..400
Crossrefs
Cf. A385494.
Programs
-
Maple
f:= proc(n) local t; add(numboccur(1, convert(t,base,10)), t = numtheory:-divisors(n)) end proc: N:= 100: # for a(1)..a(N) V:= Vector(N): count:= 0: for x from 1 do v:= f(x); if v <= N and V[v] = 0 then V[v]:= x; count:= count+1; if count = N then break fi fi; od: convert(V,list);
-
Mathematica
a[n_]:=Module[{k=1},While[Count[IntegerDigits[Divisors[k]]//Flatten,1]!=n, k++]; k]; Array[a,48] (* Stefano Spezia, Aug 28 2025 *)
-
Python
from itertools import count, islice def f(n): return sum(str(d).count("1") for d in divisors(n, generator=True)) def agen(): # generator of terms n, adict = 1, dict() for k in count(1): v = f(k) if v not in adict: adict[v] = k while n in adict: yield adict[n]; n += 1 print(list(islice(agen(), 50))) # Michael S. Branicky, Aug 27 2025
Formula
A385494(a(n)) = n.
Comments