cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A386544 Decimal expansion of the volume of a triaugmented truncated dodecahedron with unit edges.

Original entry on oeis.org

9, 2, 0, 1, 1, 8, 0, 0, 5, 1, 4, 3, 7, 0, 4, 6, 0, 9, 4, 7, 4, 9, 7, 9, 9, 8, 3, 5, 0, 1, 1, 6, 7, 1, 2, 0, 8, 1, 5, 9, 3, 3, 4, 6, 2, 6, 1, 6, 1, 5, 4, 3, 0, 2, 1, 5, 5, 1, 3, 5, 3, 2, 2, 1, 3, 4, 4, 3, 7, 4, 3, 3, 1, 1, 6, 8, 2, 6, 2, 2, 4, 1, 2, 3, 6, 1, 1, 1, 0, 9
Offset: 2

Views

Author

Paolo Xausa, Jul 28 2025

Keywords

Comments

The triaugmented truncated dodecahedron is Johnson solid J_71.

Examples

			92.01180051437046094749799835011671208159334626...
		

Crossrefs

Cf. A386545 (surface area).

Programs

  • Mathematica
    First[RealDigits[7/12*(75 + 37*Sqrt[5]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J71", "Volume"], 10, 100]]

Formula

Equals (7/12)*(75 + 37*sqrt(5)) = (7/12)*(75 + 37*A002163).
Equals A377695 + 3*A179590.
Equals the largest root of 36*x^2 - 3150*x - 14945.

A385505 Decimal expansion of the volume of a biaugmented triangular prism with unit edge.

Original entry on oeis.org

9, 0, 4, 4, 1, 7, 2, 2, 2, 6, 8, 3, 2, 5, 1, 0, 0, 6, 3, 1, 5, 7, 5, 7, 8, 2, 6, 7, 7, 9, 7, 0, 0, 7, 8, 4, 5, 9, 2, 2, 5, 8, 6, 0, 5, 2, 4, 4, 9, 1, 1, 1, 8, 1, 4, 0, 6, 1, 7, 8, 3, 2, 4, 1, 9, 3, 2, 2, 7, 4, 1, 3, 7, 1, 4, 5, 6, 9, 0, 2, 2, 2, 2, 0, 4, 1, 5, 7, 2, 4
Offset: 0

Views

Author

Paolo Xausa, Jul 01 2025

Keywords

Comments

The biaugmented triangular prism is Johnson solid J_50.

Examples

			0.90441722268325100631575782677970078459225860524491...
		

Crossrefs

Cf. A384141 (surface area + 4).

Programs

  • Mathematica
    First[RealDigits[Sqrt[59/144 + 1/Sqrt[6]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J50", "Volume"], 10, 100]]

Formula

Equals sqrt(59/144 + 1/sqrt(6)) = sqrt(59/144 + A020763).
Equals the largest root of 20736*x^4 - 16992*x^2 + 25.

A385569 Decimal expansion of the volume of an augmented hexagonal prism with unit edge.

Original entry on oeis.org

2, 8, 3, 3, 7, 7, 8, 4, 7, 1, 7, 4, 8, 8, 3, 1, 7, 8, 1, 7, 5, 8, 1, 1, 7, 6, 3, 2, 9, 6, 0, 4, 2, 4, 8, 9, 6, 8, 4, 2, 4, 8, 6, 5, 2, 6, 6, 1, 1, 7, 2, 8, 9, 5, 4, 2, 7, 9, 8, 2, 3, 7, 5, 8, 8, 4, 3, 0, 2, 1, 6, 0, 5, 1, 0, 6, 8, 8, 4, 5, 6, 2, 0, 9, 6, 7, 8, 3, 8, 6
Offset: 1

Views

Author

Paolo Xausa, Jul 03 2025

Keywords

Comments

The augmented hexagonal prism is Johnson solid J_54.

Examples

			2.8337784717488317817581176329604248968424865266117...
		

Crossrefs

Cf. A354129 (surface area + 2).

Programs

  • Mathematica
    First[RealDigits[(Sqrt[2] + 9*Sqrt[3])/6, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J54", "Volume"], 10, 100]]

Formula

Equals (sqrt(2) + 9*sqrt(3))/6 = (A002193 + 9*A002194)/6.
Equals the largest root of 1296*x^4 - 17640*x^2 + 58081.

A097715 Decimal expansion of 7*sqrt(3)/2.

Original entry on oeis.org

6, 0, 6, 2, 1, 7, 7, 8, 2, 6, 4, 9, 1, 0, 7, 0, 5, 2, 7, 3, 4, 6, 0, 6, 2, 1, 9, 5, 2, 7, 0, 5, 5, 3, 2, 8, 4, 2, 9, 9, 8, 1, 8, 3, 8, 8, 3, 3, 6, 3, 3, 2, 1, 9, 8, 1, 9, 5, 3, 2, 4, 4, 2, 8, 0, 8, 1, 7, 6, 5, 5, 5, 9, 1, 8, 0, 8, 0, 0, 1, 2, 9, 7, 8, 4, 0, 1, 1, 6, 5, 3, 6, 5, 0, 3, 7, 0, 0, 1, 4, 8, 6, 4, 6, 9
Offset: 1

Views

Author

Lekraj Beedassy, Sep 21 2004

Keywords

Comments

Corresponds to the minimal height-to-diameter ratio of a cylinder such that seven of them may be placed in mutual contact.
Also the surface area of a triaugmented triangular prism (Johnson solid J_51) with unit edge. - Paolo Xausa, Jul 01 2025

Examples

			6.0621778264910705273460621952705532842998183883363...
		

References

  • Martin Gardner, The Scientific American book of Mathematical Puzzles & Diversions, pp. 115 Simon & Shuster NY 1959 (or Hexaflexagons And Other Mathematical Diversions, The Univ. of Chicago Press Chicago IL 1988).

Crossrefs

Programs

  • Mathematica
    RealDigits[7Sqrt[3]/2, 10, 105][[1]]

Extensions

Corrected and extended by Rick L. Shepherd and Ray Chandler, Sep 21 2004
Showing 1-4 of 4 results.