A385575
Numbers whose binary indices have the same number of adjacent parts differing by 1 as adjacent parts differing by more than 1.
Original entry on oeis.org
1, 2, 4, 8, 11, 13, 16, 19, 22, 25, 26, 32, 35, 38, 44, 49, 50, 52, 64, 67, 70, 76, 87, 88, 91, 93, 97, 98, 100, 104, 107, 109, 117, 128, 131, 134, 140, 151, 152, 155, 157, 167, 174, 176, 179, 182, 185, 186, 193, 194, 196, 200, 203, 205, 208, 211, 214, 217
Offset: 1
The terms together with their binary expansions and binary indices begin:
1: 1 ~ {1}
2: 10 ~ {2}
4: 100 ~ {3}
8: 1000 ~ {4}
11: 1011 ~ {1,2,4}
13: 1101 ~ {1,3,4}
16: 10000 ~ {5}
19: 10011 ~ {1,2,5}
22: 10110 ~ {2,3,5}
25: 11001 ~ {1,4,5}
26: 11010 ~ {2,4,5}
32: 100000 ~ {6}
35: 100011 ~ {1,2,6}
38: 100110 ~ {2,3,6}
44: 101100 ~ {3,4,6}
49: 110001 ~ {1,5,6}
50: 110010 ~ {2,5,6}
52: 110100 ~ {3,5,6}
64: 1000000 ~ {7}
67: 1000011 ~ {1,2,7}
70: 1000110 ~ {2,3,7}
76: 1001100 ~ {3,4,7}
87: 1010111 ~ {1,2,3,5,7}
88: 1011000 ~ {4,5,7}
91: 1011011 ~ {1,2,4,5,7}
93: 1011101 ~ {1,3,4,5,7}
97: 1100001 ~ {1,6,7}
98: 1100010 ~ {2,6,7}
100: 1100100 ~ {3,6,7}
A384175 counts subsets with all distinct lengths of maximal runs, complement
A384176.
A384877 gives lengths of maximal anti-runs in binary indices, firsts
A384878.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100],Length[Split[bpe[#],#2==#1+1&]]==Length[Split[bpe[#],#2!=#1+1&]]&]
-
is_ok(n)=hammingweight(n)==2*hammingweight(bitand(n,n>>1))+1 \\ Christian Sievers, Jul 18 2025
A385574
Number of integer partitions of n with the same number of adjacent equal parts as adjacent unequal parts.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 2, 4, 5, 6, 10, 11, 13, 17, 20, 30, 36, 44, 55, 70, 86, 98, 128, 156, 190, 235, 288, 351, 409, 499, 603, 722, 863, 1025, 1227, 1461, 1757, 2061, 2444, 2892, 3406, 3996, 4708, 5497, 6430, 7595, 8835, 10294, 12027, 13971, 16252, 18887, 21878
Offset: 0
The partition (5,3,2,1,1,1,1) has 4 runs ((5),(3),(2),(1,1,1,1)) and 4 anti-runs ((5,3,2,1),(1),(1),(1)) so is counted under a(14).
The a(1) = 1 through a(10) = 10 reversed partitions (A = 10):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (A)
(112) (113) (114) (115) (116) (117) (118)
(122) (133) (224) (144) (226)
(223) (233) (225) (244)
(11123) (11124) (334)
(11223) (11125)
(11134)
(11224)
(11233)
(12223)
These partitions are ranked by
A385576.
Cf.
A000071,
A003114,
A008284,
A010027,
A047966,
A210034,
A325324,
A325325,
A356606,
A384882,
A384885.
-
Table[Length[Select[Reverse/@IntegerPartitions[n],Length[Union[#]]==Length[Split[#,#2!=#1&]]&]],{n,0,30}]
-
lista(n)=Vec(polcoef((prod(i=1,n,1+x^i/(t*(1-t*x^i))+O(x*x^n))-1)*t+1,0,t)) \\ Christian Sievers, Jul 18 2025
A385576
Numbers whose prime indices have the same number of distinct elements as maximal anti-runs.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 37, 41, 43, 44, 45, 47, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 101, 103, 107, 109, 113, 116, 117, 120, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153, 157, 163
Offset: 1
The prime indices of 2640 are {1,1,1,1,2,3,5}, with 4 distinct parts {1,2,3,5} and 4 maximal anti-runs ((1),(1),(1),(2,3,5)), so 2640 is in the sequence.
The terms together with their prime indices begin:
1: {}
2: {1}
3: {2}
5: {3}
7: {4}
11: {5}
12: {1,1,2}
13: {6}
17: {7}
18: {1,2,2}
19: {8}
20: {1,1,3}
23: {9}
28: {1,1,4}
29: {10}
31: {11}
37: {12}
41: {13}
43: {14}
44: {1,1,5}
45: {2,2,3}
47: {15}
These partitions are counted by
A385574.
A356235 counts partitions with a neighborless singleton, ranks
A356237.
A384877 gives lengths of maximal anti-runs of binary indices, firsts
A384878.
A385572 counts subsets with the same number of runs as anti-runs, ranks
A385575.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],#==1||PrimeNu[#]==Length[Split[prix[#],UnsameQ]]&]
Showing 1-3 of 3 results.
Comments