cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385617 G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(x) + A(2*x)) ).

Original entry on oeis.org

1, 2, 10, 82, 1062, 22646, 846570, 58644858, 7808479582, 2038568219422, 1054007965984050, 1084591195956246130, 2226674324358059364150, 9131600163886719149539590, 74851744440590132840318820090, 1226745312860243142951267683147178, 40204124737879503807503331117931168974
Offset: 0

Views

Author

Seiichi Manyama, Jul 05 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 17; A[] = 1; Do[A[x] = 1/( 1 - x*(A[x] + A[2*x]) ) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Jul 05 2025 *)
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (2^j+1)*v[j+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} (2^k+1) * a(k) * a(n-1-k).
a(n) ~ c * 2^(n*(n-1)/2), where c = 30.250837358072598377515060923766952434821313428993180484... - Vaclav Kotesovec, Jul 05 2025

A385621 E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(3*x))/2 ).

Original entry on oeis.org

1, 1, 5, 88, 5301, 1115376, 823422553, 2109689685664, 18480955532693321, 545890697425512822016, 53732023859661557312932461, 17451409191554766719804179944960, 18549102840350232594174973144785505021, 64075761168350693656591055399719635872352256, 715103564008507527975398262955305194708318040264449
Offset: 0

Views

Author

Seiichi Manyama, Jul 05 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 15; A[] = 1; Do[A[x] =Exp[ x*(A[x] + A[3*x])/2 ]+ O[x]^terms // Normal, terms]; CoefficientList[A[x], x]Range[0,terms-1]! (* Stefano Spezia, Jul 05 2025 *)
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (j+1)*(3^j+1)*binomial(i-1, j)*v[j+1]*v[i-j])/2); v;

Formula

a(0) = 1; a(n) = (1/2) * Sum_{k=0..n-1} (k+1) * (3^k+1) * binomial(n-1,k) * a(k) * a(n-1-k).
Showing 1-2 of 2 results.