A385623 Array read by ascending antidiagonals: A(n,k) is the number obtained by concatenation of n with k in that order, with k >= 0.
0, 10, 1, 20, 11, 2, 30, 21, 12, 3, 40, 31, 22, 13, 4, 50, 41, 32, 23, 14, 5, 60, 51, 42, 33, 24, 15, 6, 70, 61, 52, 43, 34, 25, 16, 7, 80, 71, 62, 53, 44, 35, 26, 17, 8, 90, 81, 72, 63, 54, 45, 36, 27, 18, 9, 100, 91, 82, 73, 64, 55, 46, 37, 28, 19, 10, 110, 101, 92, 83, 74, 65, 56, 47, 38, 29, 110, 11
Offset: 0
Examples
Array begins as: 0, 1, 2, 3, 4, 5, 6, 7, ... 10, 11, 12, 13, 14, 15, 16, 17, ... 20, 21, 22, 23, 24, 25, 26, 27, ... 30, 31, 32, 33, 34, 35, 36, 37, ... 40, 41, 42, 43, 44, 45, 46, 47, ... 50, 51, 52, 53, 54, 55, 56, 57, ... 60, 61, 62, 63, 64, 65, 66, 67, ... ...
Links
- Stefano Spezia, Table of n, a(n) for n = 0..11475 (first 151 antidiagonals of the array, flattened)
Crossrefs
Programs
-
Mathematica
A[n_,k_]:=FromDigits[Join[IntegerDigits[n],IntegerDigits[k]]]; Table[A[n,k],{n,0,6},{k,0,7}] (* or *) A[n_,k_]:=If[k==0,10n,n*10^(Floor[Log10[k]]+1)+k]; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten
-
PARI
T(n, k) = fromdigits(concat(digits(n), digits(k))); \\ Michel Marcus, Jul 06 2025
Formula
A(n,0) = 10*n and A(n,k) = n*10^(floor(log_10(k)) + 1) + k for k > 0.